, Volume 23, Issue 2, pp 152–169 | Cite as

Plagioneurin B, a potent isolated compound induces apoptotic signalling pathways and cell cycle arrest in ovarian cancer cells

  • Noraziah Nordin
  • Nazia Abdul Majid
  • Rozana Othman
  • Fatima Abdelmutaal Ahmed Omer
  • Muhammad Nazil Afiq Nasharuddin
  • Najihah Mohd Hashim
Original Paper


Plagioneurin B belongs to acetogenin group has well-established class of compounds. Acetogenin group has attracted worldwide attention in the past few years due their biological abilities as inhibitors for several types of tumour cells. Plagioneurin B was isolated via conventional chromatography and tested for thorough mechanistic apoptosis activity on human ovarian cancer cells (CAOV-3). Its structure was also docked at several possible targets using Autodock tools software. Our findings showed that plagioneurin B successfully inhibits the growth of CAOV-3 cells at IC50 of 0.62 µM. The existence of apoptotic bodies, cell membrane blebbing and chromatin condensation indicated the hallmark of apoptosis. Increase of Annexin V-FITC bound to phosphatidylserine confirmed the apoptosis induction in the cells. The apoptosis event was triggered through the extrinsic and intrinsic pathways via activation of caspases 8 and 9, respectively. Stimulation of caspase 3 and the presence of DNA ladder suggested downstream apoptotic signalling were initiated. Further confirmation of apoptosis was conducted at the molecular levels where up-regulation in Bax, as well as down-regulation of Bcl-2, Hsp-70 and survivin were observed. Plagioneurin B was also seen to arrest CAOV-3 cells cycle at the G2/M phase. Docking simulation of plagioneurin B with CD95 demonstrated that the high binding affinity and hydrogen bonds formation may explain the capability of plagioneurin B to trigger apoptosis. This study is therefore importance in finding the effective compound that may offer an alternative drug for ovarian cancer treatment.


Plagioneurin B Acetogenin Ovarian cancer CAOV-3 cells Apoptosis Pathways 



Apoptosis inducing factor


TNF-related apoptosis-inducing ligand-receptor


CD40 ligand


Second mitochondrial-derived activator of caspase


Death receptor 6


BH3-interacting domain


Bcl-2-interacting mediator


Fas ligand


Insulin-like growth factor


Insulin-like growth factor binding protein


Cellular inhibitor of apoptosis 2


Tumour necrosis factor


Soluble tumour necrosis factor receptor


Heat-shock proteins


X chromosome-linked inhibitor of apoptosis



We wish to acknowledge the Institute of Research Management and Monitory, University of Malaya under Flagship grant (FL001E-13BIO) for their financial support. We also dedicate this study to the late Prof. Datuk Dr. A. Hamid A. Hadi for his guidance and assistance in this study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    McGuire WP, Hoskins WJ, Brady MF, Kucera PR, Partridge EE, Look KY et al (1996) Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage III and stage IV ovarian cancer. New Engl J Med 334(1):1–6CrossRefPubMedGoogle Scholar
  2. 2.
    Beller U, Quinn M, Benedet J, Creasman W, Ngan H, Maisonneuve P et al (2006) Carcinoma of the vulva. Int J Gynecol Obstet 95:S7–S27CrossRefGoogle Scholar
  3. 3.
    Monk BJ, Coleman RL (2009) Changing the paradigm in the treatment of platinum-sensitive recurrent ovarian cancer: from platinum doublets to nonplatinum doublets and adding antiangiogenesis compounds. Int J Gynecol Cancer 19(11):S63–S67CrossRefPubMedGoogle Scholar
  4. 4.
    Bellati F, Napoletano C, Ruscito I, Pastore M, Pernice M, Antonilli M et al (2010) Complete remission of ovarian cancer induce intractable malignant ascites with intraperitoneal bevacizumab. Immunological observations and a literature review. Invest New Drugs 28(6):887–894CrossRefPubMedGoogle Scholar
  5. 5.
    Schulte-Hermann R, Hufnagl K, Löw-Baselli A, Rossmanith W, Wagner A, Ruttkay-Nedecky B et al (1998) Apoptosis and hepatocarcinogenesis. Digestion 59(S2):64–65CrossRefPubMedGoogle Scholar
  6. 6.
    Kumar V, Abbas AK, Aster JC (2012) Robbins basic pathology. Elsevier Health Sciences, AmsterdamGoogle Scholar
  7. 7.
    Greenhalgh DG (1998) The role of apoptosis in wound healing. Int J Biochem Cell Biol 30(9):1019–1030CrossRefPubMedGoogle Scholar
  8. 8.
    Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305(5684):626–629CrossRefPubMedGoogle Scholar
  9. 9.
    Saelens X, Festjens N, Walle LV, Van Gurp M, Van Loo G, Vandenabeele P (2004) Toxic proteins released from mitochondria in cell death. Oncogene 23(16):2861–2874CrossRefPubMedGoogle Scholar
  10. 10.
    Wang X (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15(22):2922–2933PubMedGoogle Scholar
  11. 11.
    McDonald E, El-Deiry WS (2000) Cell cycle control as a basis for cancer drug development (review). Int J Oncol 16(5):871–957PubMedGoogle Scholar
  12. 12.
    Newman DJ (2008) Natural products as leads to potential drugs: an old process or the new hope for drug discovery? J Med Chem 51(9):2589–2599CrossRefPubMedGoogle Scholar
  13. 13.
    Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70(3):461–477CrossRefPubMedGoogle Scholar
  14. 14.
    Cragg GM, Grothaus PG, Newman DJ (2009) Impact of natural products on developing new anti-cancer agents. Chem Rev 109(7):3012–3043CrossRefPubMedGoogle Scholar
  15. 15.
    Chih H-W, Chiu H-F, Tang K-S, Chang F-R, Wu Y-C (2001) Bullatacin, a potent antitumor annonaceous acetogenin, inhibits proliferation of human hepatocarcinoma cell line 2.2. 15 by apoptosis induction. Life Sci 69(11):1321–1331CrossRefPubMedGoogle Scholar
  16. 16.
    Alali FQ, Liu X-X, McLaughlin JL (1999) Annonaceous acetogenins: recent progress. J Nat Prod 62(3):504–540CrossRefPubMedGoogle Scholar
  17. 17.
    Tormo J, Gallardo T, González M, Bermejo A, Cabedo N, Andreu I et al (1999) Annonaceous acetogenins as inhibitors of mitochondrial complex I. Curr Top Phytochem 2(8):69–90Google Scholar
  18. 18.
    Zafra-Polo MC, Figadère B, Gallardo T, Tormo J, Cortes D (1998) Natural acetogenins from Annonaceae, synthesis and mechanisms of action. Phytochemistry 48(7):1087–1117CrossRefGoogle Scholar
  19. 19.
    Éparvier V, Nguyen VH, Thoison O, Martin MT, Sévenet T, Guéritte F (2006) Cytotoxic monotetrahydrofuran acetogenins from Disepalum plagioneurum. J Nat Prod 69(9):1289–1294CrossRefPubMedGoogle Scholar
  20. 20.
    Nordin N, Mohan S, Zajmi A, Mohd Yazid NS, Abd Rahman M, Ahmed Omer F et al (2014) Antioxidant, anticancer and antimicrobial activities of methanolic extracts from Enicosanthellum pulchrum (King) Heusden. Sains Malays 43(10):1515–1521Google Scholar
  21. 21.
    Nordin N, Salama SM, Golbabapour S, Hajrezaie M, Hassandarvish P, Kamalidehghan B et al (2014) Anti-ulcerogenic effect of methanolic extracts from Enicosanthellum pulchrum (King) Heusden against ethanol-induced acute gastric lesion in animal models. PLoS ONE 9(11):e111925CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Cheah S-C, Appleton DR, Lee S-T, Lam M-L, Hadi AHA, Mustafa MR (2011) Panduratin A inhibits the growth of A549 cells through induction of apoptosis and inhibition of NF-KappaB translocation. Molecules 16(3):2583–2598CrossRefPubMedGoogle Scholar
  23. 23.
    Nordin N, Majid N, Hashim NM, Rahman MA, Hassan Z, Ali HM (2015) Liriodenine, an aporphine alkaloid from Enicosanthellum pulchrum, inhibits proliferation of human ovarian cancer cells through induction of apoptosis via the mitochondrial signaling pathway and blocking cell cycle progression. Drug Des Devel Ther 9:1–12Google Scholar
  24. 24.
    Wong ML, Medrano JF (2005) Real-time PCR for mRNA quantitation. Biotechniques 39(1):75CrossRefPubMedGoogle Scholar
  25. 25.
    Touré BB, Miller-Moslin K, Yusuff N, Perez L, Doré M, Joud C et al (2013) The role of the acidity of N-heteroaryl sulfonamides as inhibitors of Bcl-2 family protein–protein interactions. ACS Med Chem Lett 4(2):186–190CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Huang B, Eberstadt M, Olejniczak ET, Meadows RP, Fesik SW (1996) NMR structure and mutagenesis of the Fas (APO-1/CD95) death domain. Nature 384:638–641CrossRefPubMedGoogle Scholar
  27. 27.
    Mongkolsapaya J, Grimes JM, Chen N, Xu X-N, Stuart DI, Jones EY et al (1999) Structure of the TRAIL–DR5 complex reveals mechanisms conferring specificity in apoptotic initiation. Nat Struct Mol Biol 6(11):1048–1053CrossRefGoogle Scholar
  28. 28.
    Mollinedo F, Gajate C, Martín-Santamaría S, Gago F (2004) ET-18-OCH3 (edelfosine): a selective antitumour lipid targeting apoptosis through intracellular activation of Fas/CD95 death receptor. Curr Med Chem 11(24):3163–3184CrossRefPubMedGoogle Scholar
  29. 29.
    Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK et al (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19(14):1639–1662CrossRefGoogle Scholar
  30. 30.
    Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461PubMedPubMedCentralGoogle Scholar
  31. 31.
    RayBio® C-Series Human Apoptosis Antibody Array C1 user manual (2015) RayBiotech, Inc. Accessed 24 December 2017
  32. 32.
    Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Peter ME, Krammer P (2003) The CD95 (APO-1/Fas) DISC and beyond. Cell Death Differ 10(1):26–35CrossRefPubMedGoogle Scholar
  34. 34.
    Özören N, El-Deiry WS (2003) Cell surface death receptor signaling in normal and cancer cells. Semin Cancer Biol 13:135–147CrossRefPubMedGoogle Scholar
  35. 35.
    Hamann MT, Hill R, Roggo S (2007) Marine natural products. Key advances to the practical application of this resource in drug development. CHIMIA Int J Chem 61(6):313–321CrossRefGoogle Scholar
  36. 36.
    Tormo JR, Royo I, Gallardo T, Zafra-Polo MC, Hernández P, Cortes D et al (2003) In vitro antitumor structure-activity relationships of threo/trans/threo mono-tetrahydrofuranic acetogenins: correlations with their inhibition of mitochondrial complex I. Oncol Res 14(3):147–154CrossRefPubMedGoogle Scholar
  37. 37.
    Morré DJ, de Cabo R, Farley C, Oberlies NH, McLaughlin JL (1994) Mode of action of bullatacin, a potent antitumor acetogenin: inhibition of NADH oxidase activity of HeLa and HL-60, but not liver, plasma membranes. Life Sci 56(5):343–348CrossRefGoogle Scholar
  38. 38.
    Reed JC (2001) Apoptosis-regulating proteins as targets for drug discovery. Trends Mol Med 7(7):314–319CrossRefPubMedGoogle Scholar
  39. 39.
    Frankfurt OS, Krishan A (2003) Apoptosis-based drug screening and detection of selective toxicity to cancer cells. Anti-cancer Drug 14(7):555–561CrossRefGoogle Scholar
  40. 40.
    Susin SA, Daugas E, Ravagnan L, Samejima K, Zamzami N, Loeffler M et al (2000) Two distinct pathways leading to nuclear apoptosis. J Exp Med 192(4):571–580CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kawase T, Ichikawa H, Ohta T, Nozaki N, Tashiro F, Ohki R et al (2008) p53 target gene AEN is a nuclear exonuclease required for p53-dependent apoptosis. Oncogene 27(27):3797–3810CrossRefPubMedGoogle Scholar
  42. 42.
    Vermes I, Haanen C, Steffens-Nakken H, Reutellingsperger C (1995) A novel assay for apoptosis flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled annexin V. J Immunol Methods 184(1):39–51CrossRefPubMedGoogle Scholar
  43. 43.
    Van Engeland M, Nieland LJ, Ramaekers FC, Schutte B, Reutelingsperger CP (1998) Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 31(1):1–9CrossRefPubMedGoogle Scholar
  44. 44.
    Arur S, Uche UE, Rezaul K, Fong M, Scranton V, Cowan AE et al (2003) Annexin I is an endogenous ligand that mediates apoptotic cell engulfment. Dev Cell 4(4):587–598CrossRefPubMedGoogle Scholar
  45. 45.
    Igney FH, Krammer PH (2002) Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2(4):277–288CrossRefPubMedGoogle Scholar
  46. 46.
    Zheng TS, Flavell RA (2000) Divinations and surprises: genetic analysis of caspase function in mice. Exp Cell Res 256(1):67–73CrossRefPubMedGoogle Scholar
  47. 47.
    Degli Esposti M (2002) The roles of Bid. Apoptosis 7(5):433–440CrossRefPubMedGoogle Scholar
  48. 48.
    Li H, Zhu H, Xu C-J, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94(4):491–501CrossRefPubMedGoogle Scholar
  49. 49.
    Luo X, Budihardjo I, Zou H, Slaughter C, Wang X (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94(4):481–490CrossRefPubMedGoogle Scholar
  50. 50.
    Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c–dependent caspase activation by eliminating IAP inhibition. Cell 102(1):33–42CrossRefPubMedGoogle Scholar
  51. 51.
    Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE et al (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102(1):43–53CrossRefPubMedGoogle Scholar
  52. 52.
    Das A, Banik NL, Ray SK (2006) Mechanism of apoptosis with the involvement of calpain and caspase cascades in human malignant neuroblastoma SH-SY5Y cells exposed to flavonoids. Int J Cancer 119(11):2575–2585CrossRefPubMedGoogle Scholar
  53. 53.
    Sinha S, Pal BC, Jagadeesh S, Banerjee PP, Bandyopadhaya A, Bhattacharya S (2006) Mahanine inhibits growth and induces apoptosis in prostate cancer cells through the deactivation of Akt and activation of caspases. Prostate 66(12):1257–1265CrossRefPubMedGoogle Scholar
  54. 54.
    Slee EA, Adrain C, Martin SJ (2001) Executioner caspase-3,-6, and-7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem 276(10):7320–7326CrossRefPubMedGoogle Scholar
  55. 55.
    Nakahira Y, Baba K, Yoneda A, Shiina T, Toyoshima Y (1998) Circadian-regulated transcription of the psbD light-responsive promoter in wheat chloroplasts. Plant Physiol 118(3):1079–1088CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Müller M, Wilder S, Bannasch D, Israeli D, Lehlbach K, Li-Weber M et al (1998) p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J Exp Med 188(11):2033–2045CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Lee DH, Rhee JG, Lee YJ (2009) Reactive oxygen species up-regulate p53 and Puma; a possible mechanism for apoptosis during combined treatment with TRAIL and wogonin. Brit J Pharmacol 157(7):1189–1202CrossRefGoogle Scholar
  58. 58.
    Shiah H-S, Lee W-S, Juang S-H, Hong P-C, Lung C-C, Chang C-J et al (2007) Mitochondria-mediated and p53-associated apoptosis induced in human cancer cells by a novel selenophene derivative, D-501036. Biochem Pharmacol 73(5):610–619CrossRefPubMedGoogle Scholar
  59. 59.
    Polyak K, Lee M-H, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P et al (1994) Cloning of p27 Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78(1):59–66CrossRefPubMedGoogle Scholar
  60. 60.
    El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM et al (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75(4):817–825CrossRefPubMedGoogle Scholar
  61. 61.
    Serrano M, Hannon GJ, Beach D (1993) A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366(6456):704–707CrossRefPubMedGoogle Scholar
  62. 62.
    Hu W, Wu W, Yeung S, Freedman RS, Kavanagh JJ, Verschraegen CF (2001) Increased expression of heat shock protein 70 in adherent ovarian cancer and mesothelioma following treatment with manumycin, a farnesyl transferase inhibitor. Anticancer Res 22(2A):665–672Google Scholar
  63. 63.
    Luo L, Herrera I, Soosaipillai A, Diamandis E (2002) Identification of heat shock protein 90 and other proteins as tumour antigens by serological screening of an ovarian carcinoma expression library. Br J Cancer 87(3):339–343CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Nordin N, Majid NA, Mohan S, Dehghan F, Karimian H, Rahman MA et al (2016) Cleistopholine isolated from Enicosanthellum pulchrum exhibits apoptogenic properties in human ovarian cancer cells. Phytomedicine 23(4):406–416CrossRefPubMedGoogle Scholar
  65. 65.
    Rahman MA, Ramli F, Karimian H, Dehghan F, Nordin N, Ali HM et al (2016) Artonin E induces apoptosis via mitochondrial dysregulation in SKOV-3 ovarian cancer cells. PLoS ONE 11(3):e0151466CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Peter ME, Krammer PH (1998) Mechanisms of CD95 (APO-1/Fas)-mediated apoptosis. Curr Opin Immunol 10(5):545–551CrossRefPubMedGoogle Scholar
  67. 67.
    Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281(5381):1305CrossRefPubMedGoogle Scholar
  68. 68.
    Suliman A, Lam A, Datta R, Srivastava RK (2001) Intracellular mechanisms of TRAIL: apoptosis through mitochondrial-dependent and-independent pathways. Oncogene 20(17):2122–2133CrossRefPubMedGoogle Scholar
  69. 69.
    Rubio-Moscardo F, Blesa D, Mestre C, Siebert R, Balasas T, Benito A et al (2005) Characterization of p21. 3 chromosomal deletions in B-cell lymphoma: TRAIL-R1 and TRAIL-R2 as candidate dosage-dependent tumor suppressor genes. Blood 106(9):3214–3222CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Noraziah Nordin
    • 1
  • Nazia Abdul Majid
    • 2
  • Rozana Othman
    • 3
    • 4
  • Fatima Abdelmutaal Ahmed Omer
    • 3
  • Muhammad Nazil Afiq Nasharuddin
    • 5
  • Najihah Mohd Hashim
    • 3
    • 4
  1. 1.Medical Sciences 1, Faculty of Medicine & Health SciencesUniversiti Sains Islam MalaysiaKuala LumpurMalaysia
  2. 2.Institute of Biological Sciences, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia
  3. 3.Department of Pharmacy, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
  4. 4.Center for Natural Products Research and Drug Discovery (CENAR)University of MalayaKuala LumpurMalaysia
  5. 5.Department of Chemistry, Faculty of ScienceUniversiti Putra MalaysiaSelangorMalaysia

Personalised recommendations