Skip to main content

Advertisement

Log in

Synergistic effect of the pro-apoptosis peptide kla-TAT and the cationic anticancer peptide HPRP-A1

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

In this study, a peptide–peptide co-administration therapy between hybrid peptide kla-TAT and cationic anticancer peptide HPRP-A1 was designed to increase the anticancer activity of the combination peptides through synergistic effect. kla is a pro-apoptotic peptide which could induce rapid cancer cell apoptosis by disruption the mitochondrial membrane when internalized the cells. To enhance more kla peptides pass through cell membrane, a double improvement strategy was designed by chemically conjugation with cell penetration peptide TAT as well as co-administration with cationic membrane active peptide HPRP-A1, and the double anticancer mechanism of the kla-TAT peptide and HPRP-A1 including membrane disruption and apoptosis induction was verified through in vitro experiments. The CompuSyn synergism/antagonism analysis showed that kla-TAT acted synergistically with HPRP-A1 against a non-small cell lung cancer (NSCLC) A549 cell line. The anticancer activities of the two peptides were dramatically increased by co-administration, under the mechanism of cell membrane disruption, caspase-dependent apoptosis induction, as well as cyclin-D1 down-regulation based G1 phase arrest. We believe that the synergic therapeutic strategy would be a meaningful method for the anticancer peptides used in cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang N, Fu JN, Chou TC (2016) Synergistic combination of microtubule targeting anticancer fludelone with cytoprotective panaxytriol derived from panax ginseng against MX-1 cells in vitro: experimental design and data analysis using the combination index method. Am J Cancer Res 6:97–104

    PubMed  Google Scholar 

  2. Bijnsdorp IV, Giovannetti E, Peters GJ (2011) Analysis of drug interactions. Methods Mol Biol 731:421–434

    Article  CAS  PubMed  Google Scholar 

  3. Koskimaki JE, Lee E, Chen W, Rivera CG, Rosca EV, Pandey NB et al (2013) Synergy between a collagen IV mimetic peptide and a somatotropin-domain derived peptide as angiogenesis and lymphangiogenesis inhibitors. Angiogenesis 16:159–170

    Article  CAS  PubMed  Google Scholar 

  4. Zhao J, Huang YB, Liu D, Chen YX (2015) Two hits are better than one: synergistic anticancer activity of a-helical peptides and doxorubicin/epirubicin. Oncotarget 6:1769–1778

    PubMed  Google Scholar 

  5. Javadpour MM, Juban MM, Lo WC, Bishop SM, Alberty JB, Cowell SM et al (1996) De novo antimicrobial peptides with low mammalian cell toxicity. J Med Chem 39:3107–3113

    Article  CAS  PubMed  Google Scholar 

  6. Bessalle R, Kapitkovsky A, Gorea A, Shalit I, Fridkin M (1990) All-D-magainin: chirality, antimicrobial activity and proteolytic resistance. FEBS Lett 274:151–155

    Article  CAS  PubMed  Google Scholar 

  7. Dathe M, Wieprecht T, Nikolenko H, Handel L, Maloy WL, MacDonald DL et al (1997) Hydrophobicity, hydrophobic moment and angle subtended by charged residues modulate antibacterial and haemolytic activity of amphipathic helical peptides. FEBS Lett 403:208–212

    Article  CAS  PubMed  Google Scholar 

  8. Chen R, Braun GB, Luo X, Sugahara KN, Teesalu T, Ruoslahti E (2013) Application of a proapoptotic peptide to intratumorally spreading cancer therapy. Cancer Res 73:1352–1361

    Article  CAS  PubMed  Google Scholar 

  9. Ellerby HM, Arap W, Ellerby LM, Kain R, Andrusiak R, Rio GD et al (1999) Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med 5:1032–1038

    Article  CAS  PubMed  Google Scholar 

  10. Broniatowski M, Flasinski M, Zieba K, Miskowiec P (2014) Langmuir monolayer studies of the interaction of monoamphiphilic pentacyclic triterpenes with anionic mitochondrial and bacterial membrane phospholipids—searching for the most active terpene. Biochim Biophys Acta 1838:2460–2472

    Article  CAS  PubMed  Google Scholar 

  11. Qifan W, Fen N, Ying X, Xinwei F, Jun D, Ge Z (2016) iRGD-targeted delivery of a pro-apoptotic peptide activated by cathepsin B inhibits tumor growth and metastasis in mice. Tumour Biol 37:10643–10652

    Article  PubMed  Google Scholar 

  12. Lemeshko VV (2010) Potential-dependent membrane permeabilization and mitochondrial aggregation caused by anticancer polyarginine-KLA peptides. Arch Biochem Biophys 493:213–220

    Article  CAS  PubMed  Google Scholar 

  13. Fu B, Long W, Zhang Y, Zhang A, Miao F, Shen Y et al (2015) Enhanced antitumor effects of the BRBP1 compound peptide BRBP1-TAT-KLA on human brain metastatic breast cancer. Sci Rep 5:8029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ma X, Xi L, Luo D, Liu R, Li S, Liu Y et al (2012) Anti-tumor effects of the peptide TMTP1-GG-D(KLAKLAK)(2) on highly metastatic cancers. PLoS ONE 7:e42685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nakase I, Okumura S, Katayama S, Hirose H, Pujals S, Yamaguchi H et al (2012) Transformation of an antimicrobial peptide into a plasma membrane-permeable, mitochondria-targeted peptide via the substitution of lysine with arginine. Chem Commun (Camb) 48:11097–11099

    Article  CAS  Google Scholar 

  16. Hyun S, Lee S, Kim S, Jang S, Yu J, Lee Y (2014) Apoptosis inducing, conformationally constrained, dimeric peptide analogs of KLA with submicromolar cell penetrating abilities. Biomacromolecules 15:3746–3752

    Article  CAS  PubMed  Google Scholar 

  17. Mai XT, Huang JF, Tan JJ, Huang YB, Chen YX (2015) Effects and mechanisms of the secondary structure on the antimicrobial activity and specificity of antimicrobial peptides. J Pept Sci 21:561–568

    Article  CAS  PubMed  Google Scholar 

  18. Zhao LJ, Huang YB, Gao S, Cui Y, He D, Wang L et al (2013) Comparison on effect of hydrophobicity on the antibacterial and antifungal activities of alpha-helical antimicrobial peptides. Sci China-Chem 56:1307–1314

    Article  CAS  Google Scholar 

  19. Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta 1778:357–375

    Article  CAS  PubMed  Google Scholar 

  20. Dennison SR, Whittaker M, Harris F, Phoenix DA (2006) Anticancer alpha-helical peptides and structure/function relationships underpinning their interactions with tumour cell membranes. Curr Protein Pept Sci 7:487–499

    Article  CAS  PubMed  Google Scholar 

  21. Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1462:55–70

    Article  CAS  PubMed  Google Scholar 

  22. Maher S, McClean S (2008) Melittin exhibits necrotic cytotoxicity in gastrointestinal cells which is attenuated by cholesterol. Biochem Pharmacol 75:1104–1114

    Article  CAS  PubMed  Google Scholar 

  23. Zhao J, Huang Y, Liu D, Chen Y (2015) Two hits are better than one: synergistic anticancer activity of alpha-helical peptides and doxorubicin/epirubicin. Oncotarget 6:1769–1778

    PubMed  Google Scholar 

  24. Huang J, Hao D, Chen Y, Xu Y, Tan J, Huang Y et al (2011) Inhibitory effects and mechanisms of physiological conditions on the activity of enantiomeric forms of an alpha-helical antibacterial peptide against bacteria. Peptides 32:1488–1495

    Article  CAS  PubMed  Google Scholar 

  25. Chou TC (2008) Preclinical versus clinical drug combination studies. Leuk Lymphoma 49:2059–2080

    Article  PubMed  Google Scholar 

  26. Qiao H, Wang TY, Yan W, Qin A, Fan QM, Han XG et al (2015) Synergistic suppression of human breast cancer cells by combination of plumbagin and zoledronic acid In vitro. Acta Pharmacol Sin 36:1085–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    Article  CAS  PubMed  Google Scholar 

  28. Zhao L, Wientjes MG, Au JL (2004) Evaluation of combination chemotherapy: integration of nonlinear regression, curve shift, isobologram, and combination index analyses. Clin Cancer Res 10:7994–8004

    Article  CAS  PubMed  Google Scholar 

  29. Gavzan H, Sayyah M, Sardari S, Babapour V (2015) Synergistic effect of docosahexaenoic acid on anticonvulsant activity of valproic acid and lamotrigine in animal seizure models. Naunyn Schmiedebergs Arch Pharmacol 388:1029–1038

    Article  CAS  PubMed  Google Scholar 

  30. Rajah T, Chow SC (2014) The inhibition of human T cell proliferation by the caspase inhibitor z-VAD-FMK is mediated through oxidative stress. Toxicol Appl Pharmacol 278:100–106

    Article  CAS  PubMed  Google Scholar 

  31. Fotakis G, Timbrell JA (2006) In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett 160:171–177

    Article  CAS  PubMed  Google Scholar 

  32. Decker T, Lohmann-Matthes ML (1988) A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J Immunol Methods 115:61–69

    Article  CAS  PubMed  Google Scholar 

  33. Jouan E, Le Vee M, Denizot C, Da Violante G, Fardel O (2014) The mitochondrial fluorescent dye rhodamine 123 is a high-affinity substrate for organic cation transporters (OCTs) 1 and 2. Fundam Clin Pharmacol 28:65–77

    Article  CAS  PubMed  Google Scholar 

  34. Scaduto RC, Grotyohann LW (1999) Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J 76:469–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fang J, Cheng J, Wang J, Zhang Q, Liu M, Gong R et al (2016) Hemi-methylated DNA opens a closed conformation of UHRF1 to facilitate its histone recognition. Nat Commun 7:11197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhu YY, Huang HY, Wu YL (2015) Anticancer and apoptotic activities of oleanolic acid are mediated through cell cycle arrest and disruption of mitochondrial membrane potential in HepG2 human hepatocellular carcinoma cells. Mol Med Rep 12:5012–5018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang M, Camara AK, Stowe DF, Qi F, Beard DA (2007) Mitochondrial inner membrane electrophysiology assessed by rhodamine-123 transport and fluorescence. Ann Biomed Eng 35:1276–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Baracca A, Sgarbi G, Solaini G, Lenaz G (2003) Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F-0 during ATP synthesis. Biochim Et Biophys Acta-Bioenerg 1606:137–146

    Article  CAS  Google Scholar 

  39. Scaduto RC Jr, Grotyohann LW (1999) Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J 76:469–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Horton KL, Kelley SO (2009) Engineered apoptosis-inducing peptides with enhanced mitochondrial localization and potency. J Med Chem 52:3293–3299

    Article  CAS  PubMed  Google Scholar 

  41. Zhang M, Harashima N, Moritani T, Huang W, Harada M (2015) The roles of ROS and caspases in TRAIL-induced apoptosis and necroptosis in human pancreatic cancer cells. PLoS ONE 10:e0127386

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hao X, Yan Q, Zhao J, Wang W, Huang Y, Chen Y (2015) TAT modification of alpha-helical anticancer peptides to improve specificity and efficacy. PLoS ONE 10:e0138911

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ben Haij N, Planes R, Leghmari K, Serrero M, Delobel P, Izopet J et al (2015) HIV-1 Tat protein induces production of proinflammatory cytokines by human dendritic cells and monocytes/macrophages through engagement of TLR4-MD2-CD14 complex and activation of NF-kappaB pathway. PLoS ONE 10:e0129425

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81373445 to Y. X. C.) and the Natural Science Foundation of Jilin Province of China (No. 20150101189JC to Y. X. C.).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: CHH and YXC Performed the experiments: CHH and XLC Analyzed the data: CHH, YBH and YXC. Contributed reagents/materials/analysis tools: CHH, YBH and YXC. Wrote the paper: CHH and YXC.

Corresponding author

Correspondence to Yuxin Chen.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 474 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, C., Chen, X., Huang, Y. et al. Synergistic effect of the pro-apoptosis peptide kla-TAT and the cationic anticancer peptide HPRP-A1. Apoptosis 23, 132–142 (2018). https://doi.org/10.1007/s10495-018-1443-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-018-1443-1

Keywords

Navigation