, Volume 23, Issue 1, pp 54–64 | Cite as

Caspase cleavage of Mcl-1 impairs its anti-apoptotic activity and proteasomal degradation in non-small lung cancer cells

  • Ting Wang
  • Zhiwei Yang
  • Yimeng Zhang
  • Xiang Zhang
  • Lei Wang
  • Shengli Zhang
  • Lintao Jia
Original Paper


Global cleavage of cellular proteins by activated caspases is a hallmark of apoptosis, which causes biochemical collapse of the cell. Recent studies suggest that, rather than completely destroying a protein, caspase cleavage can confer novel characteristics or functions. In this respect, the post-caspase role of Bcl-2 family proteins remains uncharacterized. Here, we showed that Mcl-1, a pro-survival member of the Bcl-2 family, was cleaved by caspase-3 in non-small cell lung cancer (NSCLC) cells undergoing chemotherapeutic agent-triggered apoptosis. Caspase cleavage partially impaired the anti-apoptotic activity of Mcl-1 by reducing its mitochondrial localization and impeding its association with the permeability transition pore-forming protein Bak. However, the stability of cleaved Mcl-1 was markedly enhanced because it was more refractory to ubiquitination-dependent proteasomal degradation, thereby improving cell viability to a greater extent than full-length Mcl-1 when transiently expressed in NSCLC cells. These findings shed new light on the role of Mcl-1 in apoptosis and suggest potential novel targets for optimizing the tumoricidal capacity of chemotherapy.


Mcl-1 Chemotherapy Lung cancer Bak Proteasomal degradation 



Myeloid cell leukemia 1


Bcl-2 homology


Bcl-2-associated protein X


Non-small cell lung cancer


Permeability transition


Poly ADP-ribose polymerase




Cell Counting Kit-8


Propidium iodide



This work was supported by the National Natural Science Foundation of China (Grant Nos. 81472631 and 31200429).

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

Supplementary material

10495_2017_1436_MOESM1_ESM.tif (98 kb)
Supplementary Figure 1. Survival of lung cancer patients (Total) and those receiving routine chemotherapy as grouped by Mcl-1 expression levels. (TIF 98 KB)
10495_2017_1436_MOESM2_ESM.tif (57 kb)
Supplementary Figure 2. Western blot analysis of cells after treatment with CP (20 μmol/L) for the indicated times. (TIF 57 KB)


  1. 1.
    Chabner BA, Roberts TG Jr (2005) Chemotherapy and the war on cancer. Nat Rev Cancer 5:65–72CrossRefPubMedGoogle Scholar
  2. 2.
    Fennell DA, Summers Y, Cadranel J, Benepal T, Christoph DC, Lal R, Das M, Maxwell F, Visseren-Grul C, Ferry D (2016) Cisplatin in the modern era: the backbone of first-line chemotherapy for non-small cell lung cancer. Cancer Treat Rev 44:42–50CrossRefPubMedGoogle Scholar
  3. 3.
    Fulda S, Debatin KM (2006) Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25:4798–4811CrossRefPubMedGoogle Scholar
  4. 4.
    Olaussen KA, Postel-Vinay S (2016) Predictors of chemotherapy efficacy in non-small cell lung cancer: a challenging landscape. Ann Oncol 27:2004–2016Google Scholar
  5. 5.
    Pommier Y, Sordet O, Antony S, Hayward RL, Kohn KW (2004) Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene 23:2934–2949CrossRefPubMedGoogle Scholar
  6. 6.
    Kontos CK, Christodoulou MI, Scorilas A (2014) Apoptosis-related BCL2-family members: key players in chemotherapy. Anti-Cancer Agent Med Chem 14:353–374CrossRefGoogle Scholar
  7. 7.
    Vela L, Marzo I (2015) Bcl-2 family of proteins as drug targets for cancer chemotherapy: the long way of BH3 mimetics from bench to bedside. Curr Opin Pharmacol 23:74–81CrossRefPubMedGoogle Scholar
  8. 8.
    Hata AN, Engelman JA, Faber AC (2015) The BCL2 family: key mediators of the apoptotic response to targeted anticancer therapeutics. Cancer Disc 5:475–487CrossRefGoogle Scholar
  9. 9.
    Thomas LW, Lam C, Edwards SW (2010) Mcl-1; the molecular regulation of protein function. FEBS Lett 584:2981–2989CrossRefPubMedGoogle Scholar
  10. 10.
    Ertel F, Nguyen M, Roulston A, Shore GC (2013) Programming cancer cells for high expression levels of Mcl1. EMBO Rep 14:328–336CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Belmar J, Fesik SW (2015) Small molecule Mcl-1 inhibitors for the treatment of cancer. Pharmacol Ther 145:76–84CrossRefPubMedGoogle Scholar
  12. 12.
    Quinn BA, Dash R, Azab B, Sarkar S, Das SK, Kumar S, Oyesanya RA, Dasgupta S, Dent P, Grant S et al (2011) Targeting Mcl-1 for the therapy of cancer. Expert Opin Investig Drugs 20:1397–1411CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kazi A, Sun J, Doi K, Sung SS, Takahashi Y, Yin H, Rodriguez JM, Becerril J, Berndt N, Hamilton AD et al (2011) The BH3 alpha-helical mimic BH3-M6 disrupts Bcl-X(L), Bcl-2, and MCL-1 protein-protein interactions with Bax, Bak, Bad, or Bim and induces apoptosis in a Bax- and Bim-dependent manner. J Biol Chem 286:9382–9392CrossRefPubMedGoogle Scholar
  14. 14.
    Adams JM, Cory S (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26:1324–1337CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Akgul C, Moulding DA, White MR, Edwards SW (2000) In vivo localisation and stability of human Mcl-1 using green fluorescent protein (GFP) fusion proteins. FEBS Lett 478:72–76CrossRefPubMedGoogle Scholar
  16. 16.
    Germain M, Duronio V (2007) The N terminus of the anti-apoptotic BCL-2 homologue MCL-1 regulates its localization and function. J Biol Chem 282:32233–32242CrossRefPubMedGoogle Scholar
  17. 17.
    Morciano G, Giorgi C, Balestra D, Marchi S, Perrone D, Pinotti M, Pinton P (2016) Mcl-1 involvement in mitochondrial dynamics is associated with apoptotic cell death. Mol Biol Cell 27:20–34CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kim JH, Sim SH, Ha HJ, Ko JJ, Lee K, Bae J (2009) MCL-1ES, a novel variant of MCL-1, associates with MCL-1L and induces mitochondrial cell death. FEBS Lett 583:2758–2764CrossRefPubMedGoogle Scholar
  19. 19.
    Inuzuka H, Fukushima H, Shaik S, Liu P, Lau AW, Wei W (2011) Mcl-1 ubiquitination and destruction. Oncotarget 2:239–244CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Herrant M, Jacquel A, Marchetti S, Belhacene N, Colosetti P, Luciano F, Auberger P (2004) Cleavage of Mcl-1 by caspases impaired its ability to counteract Bim-induced apoptosis. Oncogene 23:7863–7873CrossRefPubMedGoogle Scholar
  21. 21.
    Gyorffy B, Surowiak P, Budczies J, Lanczky A (2013). Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PLoS ONE 8:e82241CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Friberg A, Vigil D, Zhao B, Daniels RN, Burke JP, Garcia-Barrantes PM, Camper D, Chauder BA, Lee T, Olejniczak ET et al (2013) Discovery of potent myeloid cell leukemia 1 (Mcl-1) inhibitors using fragment-based methods and structure-based design. J Med Chem 56:15–30CrossRefPubMedGoogle Scholar
  23. 23.
    Yang CY, Wang S (2012) Analysis of Flexibility and hotspots in Bcl-xL and Mcl-1 proteins for the design of selective small-molecule inhibitors. ACS Med Chem Lett 3:308–312CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Webb B, Sali A (2014) Comparative protein structure modeling using MODELLER. Curr Protoc Bioinform 47(56):1–32Google Scholar
  25. 25.
    Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D et al (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Brooks BR, Brooks CL 3rd, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chen R, Li L, Weng Z (2003) ZDOCK: an initial-stage protein-docking algorithm. Proteins 52:80–87CrossRefPubMedGoogle Scholar
  28. 28.
    Li L, Chen R, Weng Z (2003) RDOCK: refinement of rigid-body protein docking predictions. Proteins 53:693–707CrossRefPubMedGoogle Scholar
  29. 29.
    Yang Z, Wu F, Yuan X, Zhang L, Zhang S (2016) Novel binding patterns between ganoderic acids and neuraminidase: Insights from docking, molecular dynamics and MM/PBSA studies. J Mol Graphics Model 65:27–34CrossRefGoogle Scholar
  30. 30.
    Elkholi R, Renault TT, Serasinghe MN, Chipuk JE (2014) Putting the pieces together: how is the mitochondrial pathway of apoptosis regulated in cancer and chemotherapy? Cancer Metabol 2:16CrossRefGoogle Scholar
  31. 31.
    Soldani C, Scovassi AI (2002) Poly(ADP-ribose) polymerase-1 cleavage during apoptosis: an update. Apoptosis 7:321–328CrossRefPubMedGoogle Scholar
  32. 32.
    Rogers JM, Oleinikovas V, Shammas SL, Wong CT, De Sancho D, Baker CM, Clarke J (2014) Interplay between partner and ligand facilitates the folding and binding of an intrinsically disordered protein. Proc Natl Acad Sci USA 111:15420–15425CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Cao X, Yap JL, Newell-Rogers MK, Peddaboina C, Jiang W, Papaconstantinou HT, Jupitor D, Rai A, Jung KY, Tubin RP et al (2013) The novel BH3 alpha-helix mimetic JY-1–106 induces apoptosis in a subset of cancer cells (lung cancer, colon cancer and mesothelioma) by disrupting Bcl-xL and Mcl-1 protein-protein interactions with Bak. Mol Cancer 12:42CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776CrossRefPubMedGoogle Scholar
  35. 35.
    Parrish AB, Freel CD, Kornbluth S (2013) Cellular mechanisms controlling caspase activation and function. Cold Spring Harbor Perspect Biol 5:a008672CrossRefGoogle Scholar
  36. 36.
    Liu X, He Y, Li F, Huang Q, Kato TA, Hall RP, Li CY (2015) Caspase-3 promotes genetic instability and carcinogenesis. Mol Cell 58:284–296CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Huang Q, Li F, Liu X, Li W, Shi W, Liu FF, O’Sullivan B, He Z, Peng Y, Tan AC et al (2011) Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat Med 17:860–866CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Reubold TF, Eschenburg S (2012) A molecular view on signal transduction by the apoptosome. Cell Signal 24:1420–1425CrossRefPubMedGoogle Scholar
  39. 39.
    Correia C, Lee SH, Meng XW, Vincelette ND, Knorr KL, Ding H, Nowakowski GS, Dai H, Kaufmann SH (2015) Emerging understanding of Bcl-2 biology: implications for neoplastic progression and treatment. Biochim Biophys Acta 1853:1658–1671CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Zheng JH, Viacava Follis A, Kriwacki RW, Moldoveanu T (2016) Discoveries and controversies in BCL-2 protein-mediated apoptosis. FEBS J 283:2690–2700CrossRefPubMedGoogle Scholar
  41. 41.
    Luna-Vargas MP, Chipuk JE (2016) The deadly landscape of pro-apoptotic BCL-2 proteins in the outer mitochondrial membrane. FEBS J 283:2676–2689CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Opferman JT (2016) Attacking cancer’s Achilles heel: antagonism of anti-apoptotic BCL-2 family members. FEBS J 283:2661–2675CrossRefPubMedGoogle Scholar
  43. 43.
    Day CL, Smits C, Fan FC, Lee EF, Fairlie WD, Hinds MG (2008) Structure of the BH3 domains from the p53-inducible BH3-only proteins Noxa and Puma in complex with Mcl-1. J Mol Biol 380:958–971CrossRefPubMedGoogle Scholar
  44. 44.
    Le Gouill S, Podar K, Harousseau JL, Anderson KC (2004) Mcl-1 regulation and its role in multiple myeloma. Cell Cycle 3:1259–1262CrossRefPubMedGoogle Scholar
  45. 45.
    Huang K, Zhang J, O’Neill KL, Gurumurthy CB, Quadros RM, Tu Y, Luo X (2016) Cleavage by caspase 8 and mitochondrial membrane association activate the BH3-only protein bid during TRAIL-induced Apoptosis. J Biol Chem 291:11843–11851CrossRefPubMedGoogle Scholar
  46. 46.
    Sarosiek KA, Chonghaile NT, Letai A (2013) Mitochondria: gatekeepers of response to chemotherapy. Trends Cell Biol 23:612–619CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular BiologyFourth Military Medical UniversityXi’anChina
  2. 2.Department of Applied PhysicsXi’an Jiaotong UniversityXi’anChina

Personalised recommendations