Skip to main content
Log in

Identifying and monitoring neurons that undergo metamorphosis-regulated cell death (metamorphoptosis) by a neuron-specific caspase sensor (Casor) in Drosophila melanogaster

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Activation of caspases is an essential step toward initiating apoptotic cell death. During metamorphosis of Drosophila melanogaster, many larval neurons are programmed for elimination to establish an adult central nervous system (CNS) as well as peripheral nervous system (PNS). However, their neuronal functions have remained mostly unknown due to the lack of proper tools to identify them. To obtain detailed information about the neurochemical phenotypes of the doomed larval neurons and their timing of death, we generated a new GFP-based caspase sensor (Casor) that is designed to change its subcellular position from the cell membrane to the nucleus following proteolytic cleavage by active caspases. Ectopic expression of Casor in vCrz and bursicon, two different peptidergic neuronal groups that had been well-characterized for their metamorphic programmed cell death, showed clear nuclear translocation of Casor in a caspase-dependent manner before their death. We found similar events in some cholinergic neurons from both CNS and PNS. Moreover, Casor also reported significant caspase activities in the ventral and dorsal common excitatory larval motoneurons shortly after puparium formation. These motoneurons were previously unknown for their apoptotic fate. Unlike the events seen in the neurons, expression of Casor in non-neuronal cell types, such as glial cells and S2 cells, resulted in the formation of cytoplasmic aggregates, preventing its use as a caspase sensor in these cell types. Nonetheless, our results support Casor as a valuable molecular tool not only for identifying novel groups of neurons that become caspase-active during metamorphosis but also for monitoring developmental timing and cytological changes within the dying neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AE:

After eclosion

AFP:

After puparium formation

CNS:

Central nervous system

NLS:

Nuclear localization signal

PCD:

Programmed cell death

PNS:

Peripheral nervous system

SP:

Signal peptide

VNC:

Ventral nerve cord

References

  1. Yin VP, Thummel CS (2005) Mechanisms of steroid-triggered programmed cell death in Drosophila. Semin Cell Dev Biol 16:237–243

    Article  CAS  PubMed  Google Scholar 

  2. Truman JW, Taylor BJ, Awad TA (1993) Formation of the adult nervous system. In: Bate M, Arias AM (eds) The development of Drosophila melanogaster. Cold Spring Harbor Press, New York, pp 1245–1275

    Google Scholar 

  3. Sisk CL, Zehr JL (2005) Pubertal hormones organize the adolescent brain and behavior. Front Neuroendocrinol 26:163–174

    Article  CAS  PubMed  Google Scholar 

  4. Schulz KM, Molenda-Figueira HA, Sisk CL (2009) Back to the future: the organizational-activational hypothesis adapted to puberty and adolescence. Horm Behav 55:597–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vigil P, Orellana RF, Cortés ME, Molina CT, Switzer BE, Klaus H (2011) Endocrine modulation of the adolescent brain: a review. J Pediatr Adolesc Gynecol 24:330–337

    Article  PubMed  Google Scholar 

  6. Pfeiffer BD, Jenett A, Hammonds AS, Ngo TT, Misra S, Murphy C, Scully A, Carlson JW, Wan KH, Laverty TR, Mungall C, Svirskas R, Kadonaga JT, Doe CQ, Eisen MB, Celniker SE, Rubin GM (2008) Tools for neuroanatomy and neurogenetics in Drosophila. Proc Natl Acad Sci USA 105:9715–9720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pfeiffer BD, Ngo TT, Hibbard KL, Murphy C, Jenett A, Truman JW, Rubin GM (2010) Refinement of tools for targeted gene expression in Drosophila. Genetics 186:735–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Truman JW (1983) Programmed cell death in the nervous system of an adult insect. J Comp Neurol 216:445–452

    Article  CAS  PubMed  Google Scholar 

  9. Tissot M, Stocker RF (2000) Metamorphosis in Drosophila and other insects: the fate of neurons throughout the stages. Prog Neurobiol 62:89–111

    Article  CAS  PubMed  Google Scholar 

  10. Veverytsa L, Allan DW (2013) Subtype-specific neuronal remodeling during Drosophila metamorphosis. Fly 7:78–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee G, Wang Z, Sehgal R, Chen C-H, Kikuno K, Hay B, Park JH (2011) Drosophila caspases involved in developmentally regulated programmed cell death of peptidergic neurons during early metamorphosis. J Comp Neurol 519:34–48

    Article  CAS  PubMed  Google Scholar 

  12. Lee G, Sehgal R, Wang Z, Nair S, Kikuno K, Chen C-H, Hay B, Park JH (2013) Essential role of grim-led programmed cell death for the establishment of corazonin-producing peptidergic nervous system during embryogenesis and metamorphosis in Drosophila melanogaster. Biol Open 2:283–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Choi Y-J, Lee G, Park JH (2006) Programmed cell death mechanisms of identifiable peptidergic neurons in Drosophila melanogaster. Development 133:2223–2232

    Article  CAS  PubMed  Google Scholar 

  14. Winbush A, Weeks JC (2011) Steroid-triggered, cell-autonomous death of a Drosophila motoneurons during metamorphosis. Neural Dev 6:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Robinow S, Talbot WS, Hogness DS, Truman JW (1993) Programmed cell death in the Drosophila CNS is ecdysone-regulated and coupled with a specific ecdysone receptor isoform. Development 119:1251–1259

    CAS  PubMed  Google Scholar 

  16. Draizen TA, Ewer J, Robinow S (1999) Genetic and hormonal regulation of the death of peptidergic neurons in the Drosophila central nervous system. J Neurobiol 38:455–465

    Article  CAS  PubMed  Google Scholar 

  17. Lee G, Kim K-M, Keiko K, Wang Z, Choi Y-J, Park JH (2008) Developmental regulation and functions of the expression of the neuropeptide corazonin in Drosophila melanogaster. Cell Tissue Res 331:659–673

    Article  CAS  PubMed  Google Scholar 

  18. Lee G, Kikuno K, Nair S, Park JH (2013) Mechanisms of post-ecdysis-associated cell death of peptidergic neurons in Drosophila melanogaster. J Comp Neurol 521:3972–3991

    CAS  PubMed  Google Scholar 

  19. Shimono K, Fujimoto A, Tsuyama T, Yamamoto-Kochi M, Sato M, Hattori Y, Sugimura K, Usui T, Kimura K, Uemura T (2009) Multidendritic sensory neurons in the adult Drosophila abdomen: origins, dendritic morphology, and segment- and age-dependent programmed cell death. Neural Dev 4:37

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gurtu V, Kain SR, Zhang G (1997) Fluorometric and colorimetric detection of caspase activity associated with apoptosis. Anal Biochem 251:98–102

    Article  CAS  PubMed  Google Scholar 

  21. Fernando P, Kelly JF, Balazsi K, Slack RS, Megeney LA (2010) Caspase 3 activity is required for skeletal muscle differentiation. Proc Natl Acad Sci USA 99:11025–11030

    Article  Google Scholar 

  22. Williams DW, Kondo S, Kryzanowska A, Hiromi Y, Truman JW (2006) Local caspase activity directs engulfment of dendrites during pruning. Nat Neurosci 9:1234–1236

    Article  CAS  PubMed  Google Scholar 

  23. Bardet PL, Kolahgar GI, Mynett A, Miguel-Aliaga I, Briscoe J, Meier P, Vincent JP (2008) A fluorescent reporter of caspase activity for live imaging. Proc Natl Acad Sci USA 105:13901–13905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Barolo S, Carver LA, Posakony JW (2000) GFP and b-galactosidase transformation vectors for promoter/enhancer analysis in Drosophila. Biotechniques 29:726–732

    CAS  PubMed  Google Scholar 

  25. Choi S-H, Lee G, Monahan P, Park JH (2008) Spatial regulation of Corazonin neuropeptide expression requires multiple cis-acting elements in Drosophila melanogaster. J Comp Neurol 507:1184–1195

    Article  CAS  PubMed  Google Scholar 

  26. Awasaki T, Huang Y, O’Connor MB, Lee T (2011) Glia instruct developmental neuronal remodeling through TGF-β signaling. Nat Neurosci 14:821–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rival T, Soustelle L, Cattaert D, Cstrambi C, Iche M, Birman S (2006) Physiological requirement for the glutamate transporter dEAAT1 at the adult Drosophila neuromuscular junction. J Neurobiol 66:1061–1074

    Article  CAS  PubMed  Google Scholar 

  28. Takizawa E, Komatsu A, Tsujimiura H (2007) Identification of common excitatory motoneurons in Drosophila melanogaster larvae. Zool Sci 24:504–513

    Article  PubMed  Google Scholar 

  29. Yoo S, Lam H, Lee C, Lee G, Park JH (2017) Cloning and functional characterizations of an apoptogenic Hid gene in the Scuttle Fly, Megaselia scalaris (Diptera; Phoridae). Gene 604:9–21

    Article  CAS  PubMed  Google Scholar 

  30. Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC (1994) Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371:346–347

    Article  CAS  PubMed  Google Scholar 

  31. Choi YJ, Lee G, Hall JC, Park JH (2005) Comparative analysis of Corazonin-encoding genes (Crz’s) in Drosophila species and functional insights into Crz-expressing neurons. J Comp Neurol 482:372–385

    Article  CAS  PubMed  Google Scholar 

  32. Jacobs K, Todman MG, Allen MJ, Davies JA, Bacon JP (2000) Synaptogenesis in the giant-fibre system of Drosophila: interaction of the giant fibre and its major mononeuronal target. Development 127:5203–5212

    CAS  PubMed  Google Scholar 

  33. Weeks JC (2003) Thinking globally, acting locally: steroid hormone regulation of the dendritic architecture, synaptic connectivity and death of an individual neuron. Prog Neurobiol 70:421–442

    Article  CAS  PubMed  Google Scholar 

  34. Salvaterra PM, Kitamoto T(2001) Drosophila cholinergic neurons and processes visualized with Gal4/UAS-GFP. Gene Expr Patterns 1:73–82

    Article  CAS  Google Scholar 

  35. Williams DW, Truman JW (2005) Cellular mechanisms of dendrite pruning in Drosophila: insights from in vivo time-lapse of remodeling dendritic arborizing neurons. Development 132:3631–3642

    Article  CAS  PubMed  Google Scholar 

  36. Lee BP, Jones BW (2005) Transcriptional regulation of the Drosophila glial gene repo. Mech Dev 122:849–862

    Article  CAS  PubMed  Google Scholar 

  37. Sha K, Choi S-H, Im J, Lee GG, Loeffler F, Park JH (2014) Regulation of ethanol-related behavior and ethanol metabolism by the corazonin neurons and corazonin receptor in Drosophila melanogaster. PLoS ONE 9(1):e87062

    Article  PubMed  PubMed Central  Google Scholar 

  38. Venuto A, de Marco A (2013) Conflict of interests: multiple signal peptides with diverging goals. J Cell Biochem 114:510–513

    Article  CAS  PubMed  Google Scholar 

  39. Daniels RW, Rossano AJ, Macleod GT, Ganetzky B (2014) Expression of multiple transgenes from a single construct using viral 2A peptides in Drosophila. PLoS ONE 9(6):e100637

    Article  PubMed  PubMed Central  Google Scholar 

  40. Krowchuk DP (2010) Adolescence: a metamorphosis. N C Med J 71:355–357

    PubMed  Google Scholar 

  41. Sisk CL, Foster DL (2004) The neural basis of puberty and adolescence. Nat Neurosci 7:1040–1047

    Article  CAS  PubMed  Google Scholar 

  42. Ishizuya-Oka A, Hasebe T, Shi Y-B (2010) Apoptosis in amphibian organs during metamorphosis. Apoptosis 15:350–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Feinstein-Rotkopf Y, Arama E (2009) Can’t live without them, can live with them: roles of caspases during vital cellular processes. Apoptosis 14:980–995

    Article  PubMed  Google Scholar 

  44. Hyman BT, Yuan J (2012) Apoptotic and non-apoptotic roles of caspases in neuronal physiology and pathophysiology. Nat Rev Neurosci 13:395–406

    Article  CAS  PubMed  Google Scholar 

  45. Maro-Nof M, Yaron A (2013) Neurite pruning and neuronal cell death: spatial regulation of shared destruction programs. Curr Opin Neurobiol 23:990–996

    Article  Google Scholar 

  46. Nakajima Y, Kuranaga E (2017) Caspase-dependent non-apoptotic processes in development. Cell Death Differ 24:1422–1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tang HL, Tang HM, Fung MC, Hardwick JM (2015) In vivo CaspaseTracker biosensor system for detecting anastasis and non-apoptotic caspase activity. Sci Rep 5:9015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. White K, Arama E, Hardwick JM (2017) Controlling caspase activity in life and death. PLoS Genet 13(2):e1006545

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ambron RT, Schmied R, Huang CC, Smedman M (1992) A signal sequence mediates the retrograde transport of proteins from the axon periphery to the cell body and then into the nucleus. J Neurosci 12:2813–2818

    CAS  PubMed  Google Scholar 

  50. Ch’ng TH, Martin KC (2011) Synapse-to-nucleus signaling. Curr Opin Neurobiol 21:345–352

    Article  PubMed  PubMed Central  Google Scholar 

  51. Faleiro L, Lazebnik Y (2000) Caspases disrupt the nuclear-cytoplasmic barrier. J Cell Biol 151:951–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Goldman RD, Gruenbaum Y, Moir RD, Shumaker DK, Spann TP (2002) Nuclear lamins: building blocks of nuclear architecture. Genes Dev 16:533–547

    Article  CAS  PubMed  Google Scholar 

  53. Riddiford LM (1993) Hormones and Drosophila development. In: Bate M, Arias AM (eds) The development of Drosophila melanogaster. Cold Spring Harbor Press, New York, pp 899–939

    Google Scholar 

Download references

Acknowledgements

The works were supported by an NIH Grant (R15-GM114741) to J.P. and by the National Research Foundation of Korea Grant (214C000129) to S.Y. We are indebted to Dr. Tom Dockendorff for his proofreading of the manuscript and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae H. Park.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10495_2017_1435_MOESM1_ESM.pptx

Supplemental Fig. 1 CNS images in live prepupae at indicated time-points (APF). White prepupae were placed on a slide and a drop of glycerol was applied to it. nCasor signals in the vCrz neurons were indicated by arrowheads. Scale bar, 100 µm. (PPTX 193 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, G., Kim, J., Kim, Y. et al. Identifying and monitoring neurons that undergo metamorphosis-regulated cell death (metamorphoptosis) by a neuron-specific caspase sensor (Casor) in Drosophila melanogaster . Apoptosis 23, 41–53 (2018). https://doi.org/10.1007/s10495-017-1435-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-017-1435-6

Keywords

Navigation