Apoptosis

, Volume 22, Issue 11, pp 1431–1440 | Cite as

mPGES-1-derived prostaglandin E2 stimulates Stat3 to promote podocyte apoptosis

  • Jing Yu
  • Yimei Wu
  • Lu Wang
  • Wen Zhang
  • Man Xu
  • Jiayu Song
  • Yu Fu
  • Yiyun Cui
  • Wei Gong
  • Shuzhen Li
  • Weiwei Xia
  • Songming Huang
  • Aihua Zhang
  • Zhanjun Jia
Original Paper
  • 145 Downloads

Abstract

We previously reported that microsomal prostaglandin E synthase-1 (mPGES-1) contributed to adriamycin (Adr)-induced podocyte apoptosis. However, the molecular mechanism remains unclear. Here we studied the role of mPGES-1/PGE2 cascade in activating Stat3 signaling and the contribution of Stat3 in PGE2- and Adr-induced podocyte apoptosis. In murine podocytes, PGE2 dose- and time-dependently increased the phosphorylation of Stat3 in line with the enhanced cell apoptosis and reduced podocyte protein podocin. In agreement with the increased Stat3 phosphorylation, Stat3-derived cytokines including IL-6, IL-17, MCP-1, and ICAM-1 were significantly upregulated following PGE2 treatment. By application of a specific Stat3 inhibitor S3I-201, PGE2-induced podocyte apoptosis was largely abolished in parallel with a blockade of podocin reduction. Next, we observed that Adr treatment also enhanced p-Stat3 and activated mPGES-1/PGE2 cascade. Blockade of Stat3 by S3I-201 significantly ameliorated Adr-induced cell apoptosis and podocin reduction. More interestingly, silencing mPGES-1 in podocytes by mPGES-1 siRNA blocked Adr-induced increments of Stat-3 phosphorylation, PGE2 production, and Stat3-derived inflammatory cytokines. Taken together, this study suggested that mPGES-1-derived PGE2 could activate Stat3 signaling to promote podocyte apoptosis. Targeting mPGES-1/PGE2/Stat3 signaling might be a potential strategy for the treatment of podocytopathy.

Keywords

PGE2 mPGES-1 Stat3 Adriamycin Podocyte apoptosis 

Notes

Acknowledgements

This work was supported by Grants from the National Natural Science Foundation of China (Nos. 81600557, 81600532, 81600352, 81370802, 81300591, 81670647, and 81570616), the National Key Research and Development Program (No. 2016YFC0906103), and the Natural Science Foundation of Jiangsu Province (Nos. BK2012001, BK20160136, BK20160137). We thank Dr. Yue Zhang for her support on some experimental techniques.

Compliance with ethical standards

Conflict of interest

There is no conflict of interest to disclose.

References

  1. 1.
    Inoue K, Ishibe S (2015) Podocyte endocytosis in the regulation of the glomerular filtration barrier. Am J Physiol Ren Physiol 309(5):F398–F405CrossRefGoogle Scholar
  2. 2.
    Brahler S et al (2012) Intrinsic proinflammatory signaling in podocytes contributes to podocyte damage and prolonged proteinuria. Am J Physiol Ren Physiol 303(10):F1473–F1485CrossRefGoogle Scholar
  3. 3.
    Ronconi E et al (2009) The role of podocyte damage in the pathogenesis of glomerulosclerosis and possible repair mechanisms. G Ital Nefrol 26(6):660–669PubMedGoogle Scholar
  4. 4.
    Anil Kumar P et al (2014) Molecular and cellular events mediating glomerular podocyte dysfunction and depletion in diabetes mellitus. Front Endocrinol 5:151CrossRefGoogle Scholar
  5. 5.
    Herman-Edelstein M, Weinstein T, Gafter U (2013) TGFbeta1-dependent podocyte dysfunction. Curr Opin Nephrol Hypertens 22(1):93–99CrossRefPubMedGoogle Scholar
  6. 6.
    Zhou L, Liu Y (2015) Wnt/beta-catenin signalling and podocyte dysfunction in proteinuric kidney disease. Nat Rev Nephrol 11(9):535–545CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Yu J et al (2016) mPGES-1-derived PGE2 contributes to adriamycin-induced podocyte injury. Am J Physiol Ren Physiol 310(6):F492–F498CrossRefGoogle Scholar
  8. 8.
    Forbes LR, Milner J, Haddad E (2016) Signal transducer and activator of transcription 3: a year in review. Curr Opin Hematol 23(1):23–27CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hillmer EJ et al (2016) STAT3 signaling in immunity. Cytokine Growth Factor Rev 31:1–15CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    O’Leary R et al (2016) Macrophage-derived IL-6 contributes to ANG II-mediated angiotensinogen stimulation in renal proximal tubular cells. Am J Physiol Ren Physiol 310(10):F1000–F1007CrossRefGoogle Scholar
  11. 11.
    Peng J et al (2016) Renoprotective effects of ursolic acid on ischemia/reperfusioninduced acute kidney injury through oxidative stress, inflammation and the inhibition of STAT3 and NFkappaB activities. Mol Med Rep 14(4):3397–3402CrossRefPubMedGoogle Scholar
  12. 12.
    Xiao Y et al (2014) Pentraxin 3 inhibits acute renal injury-induced interstitial fibrosis through suppression of IL-6/Stat3 pathway. Inflammation 37(5):1895–1901CrossRefPubMedGoogle Scholar
  13. 13.
    Frias MA et al (2007) Prostaglandin E2 activates Stat3 in neonatal rat ventricular cardiomyocytes: a role in cardiac hypertrophy. Cardiovasc Res 73(1):57–65CrossRefPubMedGoogle Scholar
  14. 14.
    Pang M et al (2010) A novel STAT3 inhibitor, S3I-201, attenuates renal interstitial fibroblast activation and interstitial fibrosis in obstructive nephropathy. Kidney Int 78(3):257–268CrossRefPubMedGoogle Scholar
  15. 15.
    Seo HY et al (2016) Fyn deficiency attenuates renal fibrosis by inhibition of phospho-STAT3. Kidney Int 90:1285–1297CrossRefPubMedGoogle Scholar
  16. 16.
    Zhang L et al (2015) Paclitaxel attenuates renal interstitial fibroblast activation and interstitial fibrosis by inhibiting STAT3 signaling. Drug Des Dev Ther 9:2139–2148CrossRefGoogle Scholar
  17. 17.
    Asanuma K (2015) The role of podocyte injury in chronic kidney disease. Nihon Rinsho Meneki Gakkai Kaishi 38(1):26–36CrossRefPubMedGoogle Scholar
  18. 18.
    Lal MA, Young KW, Andag U (2015) Targeting the podocyte to treat glomerular kidney disease. Drug Discov Today 20(10):1228–1234CrossRefPubMedGoogle Scholar
  19. 19.
    Min KJ, Choi K, Kwon TK (2011) Withaferin A down-regulates lipopolysaccharide-induced cyclooxygenase-2 expression and PGE2 production through the inhibition of STAT1/3 activation in microglial cells. Int Immunopharmacol 11(8):1137–1142CrossRefPubMedGoogle Scholar
  20. 20.
    Park JY, Pillinger MH, Abramson SB (2006) Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases. Clin Immunol 119(3):229–240CrossRefPubMedGoogle Scholar
  21. 21.
    Jia Z et al (2010) mPGES-1 deletion impairs aldosterone escape and enhances sodium appetite. Am J Physiol Ren Physiol 299(1):F155–F166CrossRefGoogle Scholar
  22. 22.
    Samuelsson B, Morgenstern R, Jakobsson PJ (2007) Membrane prostaglandin E synthase-1: a novel therapeutic target. Pharmacol Rev 59(3):207–224CrossRefPubMedGoogle Scholar
  23. 23.
    Lin L et al (2016) STAT3 as a potential therapeutic target in ALDH+ and CD44+/CD24+ stem cell-like pancreatic cancer cells. Int J Oncol 49:2265–2274CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ma JQ et al (2014) Ursolic acid ameliorates carbon tetrachloride-induced oxidative DNA damage and inflammation in mouse kidney by inhibiting the STAT3 and NF-kappaB activities. Int Immunopharmacol 21(2):389–395CrossRefPubMedGoogle Scholar
  25. 25.
    Hamed MA, Ali SA, El-Rigal NS (2012) Therapeutic potential of ginger against renal injury induced by carbon tetrachloride in rats. Sci World J 2012:840421CrossRefGoogle Scholar
  26. 26.
    Yamaji K et al (2008) Interleukin-6 production by peritoneal mesothelial cells and its regulation by inflammatory factors in rats administered carbon tetrachloride intraperitoneally. Toxicol Appl Pharmacol 226(1):38–45CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Jing Yu
    • 1
    • 2
    • 3
  • Yimei Wu
    • 1
    • 2
    • 3
  • Lu Wang
    • 1
    • 2
    • 3
  • Wen Zhang
    • 1
    • 2
    • 3
  • Man Xu
    • 1
    • 2
    • 3
  • Jiayu Song
    • 1
    • 2
    • 3
  • Yu Fu
    • 1
    • 2
    • 3
  • Yiyun Cui
    • 1
    • 2
    • 3
  • Wei Gong
    • 1
    • 2
    • 3
  • Shuzhen Li
    • 1
    • 2
    • 3
  • Weiwei Xia
    • 1
    • 2
    • 3
  • Songming Huang
    • 1
    • 2
    • 3
  • Aihua Zhang
    • 1
    • 2
    • 3
  • Zhanjun Jia
    • 1
    • 2
    • 3
    • 4
  1. 1.Department of NephrologyChildren’s Hospital of Nanjing Medical UniversityNanjingPeople’s Republic of China
  2. 2.Jiangsu Key Laboratory of PediatricsNanjing Medical UniversityNanjingPeople’s Republic of China
  3. 3.Nanjing Key Laboratory of PediatricsNanjing Medical University (Children’s Hospital of Nanjing Medical University)NanjingPeople’s Republic of China
  4. 4.Department of NephrologyChildren’s Hospital of Nanjing Medical UniversityNanjingPeople’s Republic of China

Personalised recommendations