, Volume 22, Issue 11, pp 1336–1343 | Cite as

SIRT6 knockout cells resist apoptosis initiation but not progression: a computational method to evaluate the progression of apoptosis

  • Sergii Domanskyi
  • Justin W. Nicholatos
  • Joshua E. Schilling
  • Vladimir Privman
  • Sergiy Libert
Short Communication


Apoptosis is essential for numerous processes, such as development, resistance to infections, and suppression of tumorigenesis. Here, we investigate the influence of the nutrient sensing and longevity-assuring enzyme SIRT6 on the dynamics of apoptosis triggered by serum starvation. Specifically, we characterize the progression of apoptosis in wild type and SIRT6 deficient mouse embryonic fibroblasts using time-lapse flow cytometry and computational modelling based on rate-equations and cell distribution analysis. We find that SIRT6 deficient cells resist apoptosis by delaying its initiation. Interestingly, once apoptosis is initiated, the rate of its progression is higher in SIRT6 null cells compared to identically cultured wild type cells. However, SIRT6 null cells succumb to apoptosis more slowly, not only in response to nutrient deprivation but also in response to other stresses. Our data suggest that SIRT6 plays a role in several distinct steps of apoptosis. Overall, we demonstrate the utility of our computational model to describe stages of apoptosis progression and the integrity of the cellular membrane. Such measurements will be useful in a broad range of biological applications.


Apoptosis SIRT6 Cellular dynamics Plasma membrane 



S.L. and J.N. were in part supported by a grant from American Federation for Aging Research (AFAR, Grant # 2015-030). S.L. received seed grant funding from the Cornell University Center for Vertebrate Genomics. J.N. was supported by a Glenn/AFAR Scholarship for Research in the Biology of Aging.

Author Contributions

SD performed computational modelling and wrote the initial draft of the manuscript; JN performed cell culture experiments; JES assisted in optimizing the computational model; VP nucleated the method of modelling, supervised modelling efforts, designed the study; SL designed the study, supervised biological cell culture experiments, supervised computational modelling, edited the manuscript.

Compliance with ethical standards

Conflict of interest

All authors declare no conflicts of interest.


  1. 1.
    Johnstone RW, Ruefli AA, Lowe SW (2002) Apoptosis: a link between cancer genetics and chemotherapy. Cell 108(2):153–164CrossRefPubMedGoogle Scholar
  2. 2.
    Perry G, Nunomura A, Lucassen P, Lassmann H, Smith MA (1998) Apoptosis and Alzheimer’s disease. Science 282(5392):1268–1269CrossRefPubMedGoogle Scholar
  3. 3.
    Liu Y, Song Y, Zhu X (2017) MicroRNA-181a regulates apoptosis and autophagy process in Parkinson’s disease by inhibiting p38 mitogen-activated protein kinase (MAPK)/c-Jun N-terminal kinases (JNK) signaling pathways. Med Sci Monit 23:1597–1606. doi:900218CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Delfino DV, Pozzesi N, Pierangeli S, Ayroldi E, Fierabracci A (2011) Manipulating thymic apoptosis for future therapy of autoimmune diseases. Curr Pharm Des 17(29):3108–3119 pii]CrossRefPubMedGoogle Scholar
  5. 5.
    Muller PA, Vousden KH (2013) p53 mutations in cancer. Nat Cell Biol 15(1):2–8. doi: 10.1038/ncb2641 CrossRefPubMedGoogle Scholar
  6. 6.
    Sebastian C, Zwaans BM, Silberman DM, Gymrek M, Goren A, Zhong L, Ram O, Truelove J, Guimaraes AR, Toiber D, Cosentino C, Greenson JK, MacDonald AI, McGlynn L, Maxwell F, Edwards J, Giacosa S, Guccione E, Weissleder R, Bernstein BE, Regev A, Shiels PG, Lombard DB, Mostoslavsky R (2012) The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 151(6):1185–1199. doi: 10.1016/j.cell.2012.10.047 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Libert S, Guarente L (2013) Metabolic and neuropsychiatric effects of calorie restriction and sirtuins. Annu Rev Physiol 75:669–684. doi: 10.1146/annurev-physiol-030212-183800 CrossRefPubMedGoogle Scholar
  8. 8.
    Lin SJ, Kaeberlein M, Andalis AA, Sturtz LA, Defossez PA, Culotta VC, Fink GR, Guarente L (2002) Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418(6895):344–348. doi: 10.1038/nature00829 CrossRefPubMedGoogle Scholar
  9. 9.
    Libert S, Zwiener J, Chu X, Vanvoorhies W, Roman G, Pletcher SD (2007) Regulation of Drosophila life span by olfaction and food-derived odors. Science 315(5815):1133–1137CrossRefPubMedGoogle Scholar
  10. 10.
    Mattison JA, Colman RJ, Beasley TM, Allison DB, Kemnitz JW, Roth GS, Ingram DK, Weindruch R, de Cabo R, Anderson RM (2017) Caloric restriction improves health and survival of rhesus monkeys. Nat Commun 8:14063. doi: 10.1038/ncomms14063 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kanfi Y, Naiman S, Amir G, Peshti V, Zinman G, Nahum L, Bar-Joseph Z, Cohen HY (2012) The sirtuin SIRT6 regulates lifespan in male mice. Nature 483(7388):218–221. doi: 10.1038/nature10815 CrossRefPubMedGoogle Scholar
  12. 12.
    TenNapel MJ, Lynch CF, Burns TL, Wallace R, Smith BJ, Button A, Domann FE (2014) SIRT6 minor allele genotype is associated with >5-year decrease in lifespan in an aged cohort. PLoS ONE 9(12):e115616. doi: 10.1371/journal.pone.0115616 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Van Meter M, Mao Z, Gorbunova V, Seluanov A (2011) SIRT6 overexpression induces massive apoptosis in cancer cells but not in normal cells. Cell Cycle 10(18):3153–3158CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Pfister JA, Ma C, Morrison BE, D’Mello SR (2008) Opposing effects of sirtuins on neuronal survival: SIRT1-mediated neuroprotection is independent of its deacetylase activity. PLoS ONE 3(12):e4090. doi: 10.1371/journal.pone.0004090 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B, Bao JK (2012) Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif 45(6):487–498. doi: 10.1111/j.1365-2184.2012.00845.x CrossRefPubMedGoogle Scholar
  16. 16.
    Crowley LC, Marfell BJ, Scott AP, Waterhouse NJ (2016) Quantitation of apoptosis and necrosis by annexin V binding, propidium iodide uptake, and flow cytometry. Cold Spring Harb Protoc. doi: 10.1101/pdb.prot087288 Google Scholar
  17. 17.
    Domanskyi S, Schilling JE, Gorshkov V, Libert S, Privman V (2016) Rate-equation modelling and ensemble approach to extraction of parameters for viral infection-induced cell apoptosis and necrosis. J Chem Phys 145(9):094103. doi: 10.1063/1.4961676 CrossRefPubMedGoogle Scholar
  18. 18.
    Khammanit R, Chantakru S, Kitiyanant Y, Saikhun J (2008) Effect of serum starvation and chemical inhibitors on cell cycle synchronization of canine dermal fibroblasts. Theriogenology 70(1):27–34. doi: 10.1016/j.theriogenology.2008.02.015 CrossRefPubMedGoogle Scholar
  19. 19.
    Yoshimoto N, Tasaki M, Shimanouchi T, Umakoshi H, Kuboi R (2005) Oxidation of cholesterol catalyzed by amyloid beta-peptide (A beta)-Cu complex on lipid membrane. J Biosci Bioeng 100(4):455–459. doi: 10.1263/jbb.100.455 CrossRefPubMedGoogle Scholar
  20. 20.
    Arsenio J, Kakaradov B, Metz PJ, Kim SH, Yeo GW, Chang JT (2014) Early specification of CD8+ T lymphocyte fates during adaptive immunity revealed by single-cell gene-expression analyses. Nat Immunol 15(4):365–372. doi: 10.1038/ni.2842 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hollville E, Martin SJ (2016) Measuring apoptosis by microscopy and flow cytometry. Curr Protoc Immunol. doi: 10.1002/0471142735.im1438s112 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of PhysicsClarkson UniversityPotsdamUSA
  2. 2.Department of Biomedical SciencesCornell UniversityIthacaUSA

Personalised recommendations