Advertisement

Apoptosis

, Volume 22, Issue 10, pp 1205–1224 | Cite as

Etoposide and doxorubicin enhance the sensitivity of triple negative breast cancers through modulation of TRAIL-DR5 axis

  • Sarita Das
  • Neha Tripathi
  • Sumit Siddharth
  • Anmada Nayak
  • Deepika Nayak
  • Chinmayee Sethy
  • Prasad V. Bharatam
  • Chanakya Nath KunduEmail author
Article

Abstract

Death receptor 5 (DR5) is an important target for development of anticancer agents against triple-negative breast cancer (TNBC). Recently, we reported the molecular level details for the modulation of TRAIL-DR5 axis by quinacrine (QC) in breast cancer cells. In this work, the DR5 mediated anticancer potential of topoisomerase inhibitor etoposide (ET) and doxorubicin (DOX) against TNBC has been evaluated. ET and DOX enhanced the DR5 expression in TNBC cells, whereas non-topoisomerase inhibitors pifithrin-α (PIF) and dexamethasone (DEX) failed to do so. In the TRAIL pre-treated cells, ET and DOX induced higher apoptosis, indicating their synergistic effect with TRAIL. The molecular docking and molecular dynamics studies showed their ability to stabilize the TRAIL-DR5 complex, whereas PIF and DEX failed to do so. The binding energy for TRAIL-DR5 complexation in the ternary complexes containing ET (−111.08 kcal/mol) and DOX (−76.35 kcal/mol) were higher than reported binding energy of binary complex (−53.70 kcal/mol). The in silico and in vitro mutational studies highlighted the importance of DR5 residue SerB68 in mediating the receptor-drug interaction. ET and DOX failed to enhance apoptosis in DR5 knockdown (DR5-KD) cells. On the other hand, TRAIL+ET exhibited induction of DR5 and subsequent apoptosis in WT-DR5 overexpressed DR5-KD cells, by modulating the mitochondrial intrinsic apoptosis cascade. An induction of apoptosis and DR5 expression was noticed in xenograft mice and in TNBC patient-derived metastatic cells after TRAIL+ET treatment. Thus, data suggests ET and DOX act as DR5 agonistic ligands and enhance the cellular apoptosis in TNBC.

Keywords

Etoposide Doxorubicin TNBC Death receptor TRAIL Molecular docking Molecular dynamics 

Notes

Acknowledgements

The study was supported partially by the Grants from Indian Council of Medical Research (ICMR), Government of India. SD, SS, and NT thanks DST–INSPIRE, ICMR and CSIR, respectively, for their fellowship.

Author contributions

SD, SS, AN, DN, CS and CNK designed the experimental research. SD, SS, AN, DN and CS performed the experimental work. PVB and NT designed the in silico work. NT performed the in silico work. SD, NT, SS, AN, DN, CS, PVB and CNK wrote the manuscript.

Compliance with ethical standards

Conflict of interest

Authors declare no conflict of interest in this study.

Supplementary material

10495_2017_1400_MOESM1_ESM.pdf (1.2 mb)
Supplementary material 1 (PDF 1255 KB)

References

  1. 1.
    Yadav BS, Sharma SC, Chanana P, Jhamb S (2014) Systemic treatment strategies for triple-negative breast cancer. World J Clin Oncol 5(2):125–133. doi: 10.5306/wjco.v5.i2.125 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Crown J, O’Shaughnessy J, Gullo G (2012) Emerging targeted therapies in triple-negative breast cancer. Ann Oncol 23:vi56–vi65. doi: 10.1093/annonc/mds196 CrossRefPubMedGoogle Scholar
  3. 3.
    Podo F, Buydens LMC, Degani H, Hilhorst R, Klipp E, Gribbestad IS, Van Huffel S, van Laarhoven HWM, Luts J, Monleon D (2010) Triple-negative breast cancer: present challenges and new perspectives. Mol Oncol 4(3):209–229. doi: 10.1016/j.molonc.2010.04.006 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Abdelhamed S, Yokoyama S, Refaat A, Ogura K, Yagita H, Awale S, Saiki I (2014) Piperine enhances the efficacy of TRAIL-based therapy for triple-negative breast cancer cells. Anticancer Res 34(4):1893–1899PubMedGoogle Scholar
  5. 5.
    Andre F, Zielinski CC (2012) Optimal strategies for the treatment of metastatic triple-negative breast cancer with currently approved agents. Ann Oncol 23:vi46–vi51. doi: 10.1093/annonc/mds195 PubMedGoogle Scholar
  6. 6.
    Barrios CH, Liu MC, Lee SC, Vanlemmens L, Ferrero JM, Tabei T, Pivot X, Iwata H, Aogi K, Lugo-Quintana R, Harbeck N, Brickman MJ, Zhang K, Kern KA, Martin M (2010) Phase III randomized trial of sunitinib versus capecitabine in patients with previously treated HER2-negative advanced breast cancer. Breast Cancer Res Treat 121(1):121–131. doi: 10.1007/s10549-010-0788-0 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Carey LA, Rugo HS, Marcom PK, Irvin Jr W, Ferraro M, Burrows E, He X, Perou CM, Winer EP (2008) Translational Breast Cancer Research, TBCRC 001: EGFR inhibition with cetuximab added to carboplatin in metastatic triple-negative (basal-like) breast cancer. ASCO annual meeting proceedings, pp 1009Google Scholar
  8. 8.
    Chougule MB, Patel AR, Jackson T, Singh M (2011) Antitumor activity of noscapine in combination with doxorubicin in triple negative breast cancer. PLoS ONE, 6(3):e17733. doi: 10.1371/journal.pone.0017733 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Dickler MN, Rugo HS, Eberle CA, Brogi E, Caravelli JF, Panageas KS, Boyd J, Yeh B, Lake DE, Dang CT (2008) A phase II trial of erlotinib in combination with bevacizumab in patients with metastatic breast cancer. Clin Cancer Res 14(23):7878–7883. doi: 10.1158/1078-0432.CCR-08-0141 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ellard SL, Clemons M, Gelmon KA, Norris B, Kennecke H, Chia S, Pritchard K, Eisen A, Vandenberg T, Taylor M (2009) Randomized phase II study comparing two schedules of everolimus in patients with recurrent/metastatic breast cancer: NCIC Clinical Trials Group IND. 163. J Clin Oncol 27(27):4536–4541. doi: 10.1200/JCO.2008.21.3033 CrossRefPubMedGoogle Scholar
  11. 11.
    Gajria D, King TA, Pannu H, Sakr R, Seidman AD, Syldor A, Patil S, Maybody M, Norton L, Rosen N (2011) Combined inhibition of mTORC1 with temsirolimus and HER2 with neratinib: A phase I study in patients with metastatic HER2-amplified breast cancer. ASCO annual meeting proceedings, p 574Google Scholar
  12. 12.
    Gucalp A, Traina TA (2011) Triple-negative breast cancer: adjuvant therapeutic options. Chemother Res Pract doi: 10.1155/2011/696208 PubMedPubMedCentralGoogle Scholar
  13. 13.
    Isakoff SJ, Overmoyer B, Tung NM, Gelman RS, Giranda VL, Bernhard KM, Habin KR, Ellisen LW, Winer EP, Goss PE (2010) A phase II trial of the PARP inhibitor veliparib (ABT888) and temozolomide for metastatic breast cancer. ASCO annual meeting proceedings, p 1019Google Scholar
  14. 14.
    Gluz O, Liedtke C, Gottschalk N, Pusztai L, Nitz U, Harbeck N (2009) Triple-negative breast cancer-current status and future directions. Ann Oncol 20(12):1913–1927. doi: 10.1093/annonc/mdp492 CrossRefPubMedGoogle Scholar
  15. 15.
    Miles DW, Dieras V, Cortes J, Duenne AA, Yi J, O’Shaughnessy J (2013) First-line bevacizumab in combination with chemotherapy for HER2-negative metastatic breast cancer: pooled and subgroup analyses of data from 2447 patients. Ann Oncol 24(11):2773–2780. doi: 10.1093/annonc/mdt276 CrossRefPubMedGoogle Scholar
  16. 16.
    Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, Weitzel JN, Friedlander M, Arun B, Loman N, Schmutzler RK (2010) Oral poly (ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet, 376(9737):235–244. doi: 10.1016/S0140-6736(10)60892-6 CrossRefPubMedGoogle Scholar
  17. 17.
    O’Shaughnessy J, Schwartzberg LS, Danso MA, Rugo HS, Miller K, Yardley DA, Carlson RW, Finn RS, Charpentier E, Freese M (2011) A randomized phase III study of iniparib (BSI-201) in combination with gemcitabine/carboplatin (G/C) in metastatic triple-negative breast cancer (TNBC). ASCO annual meeting proceedings, p 1007Google Scholar
  18. 18.
    Das S, Tripathi N, Preet R, Siddharth S, Nayak A, Bharatam PV, Kundu CN (2016) Quinacrine induces apoptosis in cancer cells by forming a functional bridge between TRAIL-DR5 complex and modulating the mitochondrial intrinsic cascade. Oncotarget 8(1):248–267. doi: 10.18632/oncotarget.11335 PubMedCentralGoogle Scholar
  19. 19.
    Johnstone RW, Frew AJ, Smyth MJ (2008) The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer 8(10):782–798. doi: 10.1038/nrc2465 CrossRefPubMedGoogle Scholar
  20. 20.
    Rahman M, Davis SR, Pumphrey JG, Bao J, Nau MM, Meltzer PS, Lipkowitz S (2009) TRAIL induces apoptosis in triple-negative breast cancer cells with a mesenchymal phenotype. Breast Cancer Res Treat 113(2):217–230. doi: 10.1007/s10549-008-9924-5 CrossRefPubMedGoogle Scholar
  21. 21.
    Engel JB, Martens T, Hahne JC, Hausler SFM, Krockenberger M, Segerer S, Djakovic A, Meyer S, Dietl J, Wischhusen J, Honig A (2012) Effects of lobaplatin as a single agent and in combination with TRAIL on the growth of triple-negative p53-mutated breast cancers in vitro. Anti-Cancer Drugs 23(4): 426–436. doi: 10.1097/CAD.0b013e32834fb8ce CrossRefPubMedGoogle Scholar
  22. 22.
    Hafiyani Z, Yokoyama S, Abdelhamed S, Hayakawa Y, Saiki I (2014) Bufadienolides overcome TRAIL resistance in breast cancer cells via jak-stat pathway. Altern Integr Med (Baltimore) 3:154. doi: 10.4172/2327-5162.1000154 Google Scholar
  23. 23.
    Xu L, Yin S, Banerjee S, Sarkar F, Reddy KB (2011) Enhanced anticancer effect of the combination of cisplatin and TRAIL in triple-negative breast tumor cells. Mol Cancer Ther 10(3):550–557. doi: 10.1158/1535-7163.MCT-10-0571 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Yin S, Xu L, Bandyopadhyay S, Sethi S, Reddy KB (2011) Cisplatin and TRAIL enhance breast cancer stem cell death. Int J Oncol 39(4):891–898. doi: 10.3892/ijo.2011.1085 PubMedPubMedCentralGoogle Scholar
  25. 25.
    Zhu W, Zhang H, Shi Y, Song M, Zhu B, Wei L (2013) Oncolytic adenovirus encoding tumor necrosis factor-related apoptosis inducing ligand (TRAIL) inhibits the growth and metastasis of triple-negative breast cancer. Cancer Biol Ther 14(11):1016–1023. doi: 10.4161/cbt.26043 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Thakur DS (2011) Topoisomerase II inhibitors in cancer treatment. Int J Pharm Sci Nanotechnol 3(4):1173–1181Google Scholar
  27. 27.
    Mrklic I, Pogorelic Z, Capkun V, Tomic S (2014) Expression of topoisomerase II-α in triple negative breast cancer. Appl Immunohistochem Mol Morphol 22(3):182–187. doi: 10.1097/PAI.0b013e3182910967 CrossRefPubMedGoogle Scholar
  28. 28.
    Woo SM, Kim AJ, Choi YK, Shin YC, Cho SG, Ko SG (2016) Synergistic effect of SH003 and doxorubicin in triple-negative breast cancer. Phytother Res 30(11):1817–1823. doi: 10.1002/ptr.5687 CrossRefPubMedGoogle Scholar
  29. 29.
    Baldwin EL, Osheroff N (2005) Etoposide, topoisomerase II and cancer. Curr Med Chem Anti-Cancer Agents 5(4):363–372CrossRefPubMedGoogle Scholar
  30. 30.
    Gibson SB, Oyer R, Spalding AC, Anderson SM, Johnson GL (2000) Increased expression of death receptors 4 and 5 synergizes the apoptosis response to combined treatment with etoposide and TRAIL. Mol Cell Biol 20(1):205–212CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Itoh M, Noutomi T, Toyota H, Mizuguchi J (2003) Etoposide-mediated sensitization of squamous cell carcinoma cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced loss in mitochondrial membrane potential. Oral Oncol 39(3):269–276CrossRefPubMedGoogle Scholar
  32. 32.
    Kim SM, Woo JS, Jeong CH, Ryu CH, Lim JY, Jeun SS (2012) Effective combination therapy for malignant glioma with TRAIL-secreting mesenchymal stem cells and lipoxygenase inhibitor MK886. Cancer Res 72(18):4807–4817. doi: 10.1158/0008-5472.CAN-12-0123 CrossRefPubMedGoogle Scholar
  33. 33.
    Jani TS, DeVecchio J, Mazumdar T, Agyeman A, Houghton JA (2010) Inhibition of NF-kB signaling by quinacrine is cytotoxic to human colon carcinoma cell lines and is synergistic in combination with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or oxaliplatin. J Biol Chem 285(25):19162–19172. doi: 10.1074/jbc.M109.091645 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wang W, Gallant JN, Katz SI, Dolloff NG, Smith CD, Abdulghani J, Allen JE, Dicker DT, Hong B, Navaraj A (2011) Quinacrine sensitizes hepatocellular carcinoma cells to TRAIL and chemotherapeutic agents. Cancer Biol Ther 12(3):229–238CrossRefPubMedGoogle Scholar
  35. 35.
    Preet R, Mohapatra P, Das D, Satapathy SR, Choudhuri T, Wyatt MD, Kundu CN (2013) Lycopene synergistically enhances quinacrine action to inhibit Wnt-TCF signaling in breast cancer cells through APC. Carcinogenesis 34(2):277–286. doi: 10.1093/carcin/bgs351 CrossRefPubMedGoogle Scholar
  36. 36.
    Preet R, Mohapatra P, Mohanty S, Sahu SK, Choudhuri T, Wyatt MD, Kundu CN (2012) Quinacrine has anticancer activity in breast cancer cells through inhibition of topoisomerase activity. Int J Cancer 130(7):1660–1670. doi: 10.1002/ijc.26158 CrossRefPubMedGoogle Scholar
  37. 37.
    Preet R, Siddharth S, Satapathy SR, Das S, Nayak A, Das D, Wyatt MD, Kundu CN (2016) Chk1 inhibitor synergizes quinacrine mediated apoptosis in breast cancer cells by compromising the base excision repair cascade. Biochem Pharmacol 105:23–33. doi: 10.1016/j.bcp.2016.01.017 CrossRefPubMedGoogle Scholar
  38. 38.
    Benada J, Macurek L (2015) Targeting the checkpoint to kill cancer cells. Biomolecules 5:1912–1937. doi: 10.3390/biom5031912 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Komarov PG, Komarova EA, Kondratov RV, Christov-Tselkov K, Coon JS, Chernov MV, Gudkov AV (1999) A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285(5434):1733–1737CrossRefPubMedGoogle Scholar
  40. 40.
    Tendler Y, Pokroy R, Panshin A, Weisinger G (2013) p53 protein subcellular localization and apoptosis in rodent corneal epithelium cell culture following ultraviolet irradiation. Int J Mol Med 31(3):540–546. doi: 10.3892/ijmm.2013.1247 CrossRefPubMedGoogle Scholar
  41. 41.
    Cox G, Austin RC (1997) Dexamethasone-induced suppression of apoptosis in human neutrophils requires continuous stimulation of new protein synthesis. J Leukoc Biol 61(2):224–230PubMedGoogle Scholar
  42. 42.
    Wen LP, Madani K, Fahrni JA, Duncan SR, Rosen GD (1997) Dexamethasone inhibits lung epithelial cell apoptosis induced by IFN-γ and Fas. Am J Physiol Lung Cell Mol Physiol 273(5):L921–L929Google Scholar
  43. 43.
    Maestro, version 9.3: Schrödinger, LLC, New York, 2012Google Scholar
  44. 44.
    MarvinView 5.2.3_1; 2009: ChemAxon. http://www.chemaxon.com/marvin
  45. 45.
    Graves JD, Kordich JJ, Huang TH, Piasecki J, Bush TL, Sullivan T, Foltz IN, Chang W, Douangpanya H, Dang T (2014) Apo2L/TRAIL and the death receptor 5 agonist antibody AMG 655 cooperate to promote receptor clustering and antitumor activity. Cancer Cell 26(2):177–189. doi: 10.1016/j.ccr.2014.04.028 CrossRefPubMedGoogle Scholar
  46. 46.
    Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh MJ, Cui G, Roe DR, Mathews DH, Seetin MG, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2012) AMBER 12. University of California, San FranciscoGoogle Scholar
  47. 47.
    Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33(12):889–897CrossRefPubMedGoogle Scholar
  48. 48.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38CrossRefPubMedGoogle Scholar
  49. 49.
    Mohapatra P, Preet R, Das D, Satapathy SR, Siddharth S, Choudhuri T, Wyatt MD, Kundu CN (2014) The contribution of heavy metals in cigarette smoke condensate to malignant transformation of breast epithelial cells and in vivo initiation of neoplasia through induction of a PI3K-AKT-NFκB cascade. Toxicol Appl Pharmacol 274(1):168–179. doi: 10.1016/j.taap.2013.09.028 CrossRefPubMedGoogle Scholar
  50. 50.
    Matulis SM, Gupta VA, Nooka AK, Hollen HV, Kaufman JL, Lonial S, Boise LH (2016) Dexamethasone treatment promotes Bcl-2 dependence in multiple myeloma resulting in sensitivity to venetoclax. Leukemia 30(5):1086–1093. doi: 10.1038/leu.2015.350 CrossRefPubMedGoogle Scholar
  51. 51.
    Prakash L, Bhosale P, Cloyd J, Kim M, Parker N, Yao J, Dasari A, Halperin D, Aloia T, Lee JE (2017) Role of fluorouracil, doxorubicin, and streptozocin therapy in the preoperative treatment of localized pancreatic neuroendocrine tumors. J Gastrointest Surg 21(1):155–163. doi: 10.1007/s11605-016-3270-4 CrossRefPubMedGoogle Scholar
  52. 52.
    Wong FC, Woo CC, Hsu A, Tan BKH (2013) The anti-cancer activities of Vernonia amygdalina extract in human breast cancer cell lines are mediated through caspase-dependent and p53-independent pathways. PLoS ONE 8(10):e78021. doi: 10.1371/journal.pone.0078021 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Satapathy SR, Mohapatra P, Das D, Siddharth S, Kundu CN (2015) The apoptotic effect of plant based nanosilver in colon cancer cells is a p53 dependent process involving ROS and JNK cascade. Pathol Oncol Res 21(2):405–411. doi: 10.1007/s12253-014-9835-1 CrossRefPubMedGoogle Scholar
  54. 54.
    Siddharth S, Das S, Nayak A, Kundu CN (2016) SURVIVIN as a marker for quiescent-breast cancer stem cells-An intermediate, adherent, pre-requisite phase of breast cancer metastasis. Clin Exp Metastasis, 33(7):661–675. doi: 10.1007/s10585-016-9809-7 CrossRefPubMedGoogle Scholar
  55. 55.
    Suliman A, Lam A, Datta R, Srivastava RK (2001) Intracellular mechanisms of TRAIL: apoptosis through mitochondrial-dependent and-independent pathways. Oncogene 20(17):2122–2133CrossRefPubMedGoogle Scholar
  56. 56.
    Luo J, Lee SO, Liang L, Huang CK, Li L, Wen S, Chang C (2014) Infiltrating bone marrow mesenchymal stem cells increase prostate cancer stem cell population and metastatic ability via secreting cytokines to suppress androgen receptor signaling. Oncogene 33(21):2768–2778. doi: 10.1038/onc.2013.233 CrossRefPubMedGoogle Scholar
  57. 57.
    Ovcaricek T, Frkovic SG, Matos E, Mozina B, Borstnar S (2011) Triple negative breast cancer—prognostic factors and survival. Radiol Oncol 45(1):46–52. doi: 10.2478/v10019-010-0054-4 CrossRefPubMedGoogle Scholar
  58. 58.
    Vaculova A, Kaminskyy V, Jalalvand E, Surova O, Zhivotovsky B (2010) Doxorubicin and etoposide sensitize small cell lung carcinoma cells expressing caspase-8 to TRAIL. Mol. Cancer 9:87. doi: 10.1186/1476-4598-9-87 Google Scholar
  59. 59.
    Yu KD, Zhu R, Zhan M, Rodriguez AA, Yang W, Wong S, Makris A, Lehmann BD, Chen X, Mayer I (2013) Identification of prognosis-relevant subgroups in patients with chemoresistant triple-negative breast cancer. Clin Cancer Res 19(10):2723–2733. doi: 10.1158/1078-0432.CCR-12-2986 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Chang JC (2016) Cancer stem cells: Role in tumor growth, recurrence, metastasis, and treatment resistance. Medicine (Baltimore) 95(1):S20–S25. doi: 10.1097/MD.0000000000004766 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Sarita Das
    • 1
  • Neha Tripathi
    • 2
  • Sumit Siddharth
    • 1
  • Anmada Nayak
    • 1
  • Deepika Nayak
    • 1
  • Chinmayee Sethy
    • 1
  • Prasad V. Bharatam
    • 2
  • Chanakya Nath Kundu
    • 1
    Email author
  1. 1.Cancer Biology Division, KIIT School of BiotechnologyKIIT UniversityBhubaneswarIndia
  2. 2.National Institute of Pharmaceutical Education and Research (NIPER)MohaliIndia

Personalised recommendations