Advertisement

Apoptosis

, Volume 22, Issue 6, pp 877–884 | Cite as

Notch-4 silencing inhibits prostate cancer growth and EMT via the NF-κB pathway

  • Jianwei Zhang
  • Youlin Kuang
  • Yan Wang
  • Quanquan Xu
  • Qinghua Ren
Article

Abstract

Epithelial-mesenchymal transition (EMT) is implicated in the metastasis of human prostate cancer (PCa). Notch signaling has been established as a regulator of EMT. Notch-4 has emerged as a mammary proto-oncogene and a target in several cancers. However, the role and the mechanism of action of Notch-4 in PCa are still unclear. In the present study, we first observed a marked increase in Notch-4 expression in the PCa cell lines DU145, PC3 and LnCAP compared with the non-malignant prostate epithelial cell line RWPE1. Knocking down the expression of Notch-4 suppressed the viability and proliferation in the PCa cell lines DU145 and PC3. Also, further study showed that a decline in Notch-4 significantly promoted apoptosis in PC3 cells. Notch-4 silencing also resulted in decreased cell migration and invasion and affected the expression of EMT markers. We hypothesized that Notch-4 ablation suppresses the activity of NF-κB, so we used PMA to stimulate NF-κB p50 and p65 activation in PC3 cells. The results indicate that PMA treatment impaired the action of Notch-4 ablation in the biology of PC3 cells including cell growth, apoptosis, migration, invasion and EMT. The results of the present study show that RNAi targeting against Notch-4 expression suppresses PCa progression.

Keywords

Prostate cancer Epithelial-mesenchymal transition Notch-4 NF-kB 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Zhao W, Guo W, Zhou Q, Ma SN, Wang R, Qiu Y, Jin M, Duan HQ, Kong D (2013) In vitro antimetastatic effect of phosphatidylinositol 3-kinase inhibitor ZSTK474 on prostate cancer PC3 cells. Int J Mol Sci 14(7):13577–13591CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Andreoiu M, Cheng L (2010) Multifocal prostate cancer: biologic, prognostic, and therapeutic implications. Hum Pathol 41(6):781–793CrossRefPubMedGoogle Scholar
  3. 3.
    Crawford ED, Higano CS, Shore ND, Hussain M, Petrylak DP (2015) Treating patients with metastatic castration resistant prostate cancer: a comprehensive review of available therapies. J Urol 194(6):1537–1547CrossRefPubMedGoogle Scholar
  4. 4.
    Shi J, Xia Y, Song Q, Zhou X, Mizokami A, Keller E, Zhang J, Lu Y (2014) Interaction of prostate cancer cells with tumor microenvironment promotes EMT and DTCs activation. Cancer Res 74(19 Supplement):1–1CrossRefGoogle Scholar
  5. 5.
    Liu YN, Yin JJ, Abou-Kheir W, Hynes PG, Casey OM, Fang L, Yi M, Stephens RM, Seng V, Sheppard-Tillman H, Martin P, Kelly K (2013) MiR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slug-independent mechanisms. Oncogene 32(3):296–306CrossRefPubMedGoogle Scholar
  6. 6.
    Prasad CP, Rath G, Mathur S, Bhatnagar D, Parshad R, Ralhan R (2009) Expression analysis of E-cadherin, Slug and GSK3beta in invasive ductal carcinoma of breast. BMC Cancer 9(325):1471–2407Google Scholar
  7. 7.
    Voulgari A, Pintzas A (2009) Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim Biophys Acta 2:75–90Google Scholar
  8. 8.
    Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA (2008) Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 68(10):3645–3654CrossRefPubMedGoogle Scholar
  9. 9.
    Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A, Waldvogel B, Vannier C, Darling D, zur Hausen A, Brunton VG, Morton J, Sansom O, Schuler J, Stemmler MP, Herzberger C, Hopt U, Keck T, Brabletz S, Brabletz T (2009) The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 11(12):1487–1495CrossRefPubMedGoogle Scholar
  10. 10.
    Byles V, Zhu L, Lovaas JD, Chmilewski LK, Wang J, Faller DV, Dai Y (2012) SIRT1 induces EMT by cooperating with EMT transcription factors and enhances prostate cancer cell migration and metastasis. Oncogene 31(43):4619–4629CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sahlgren C, Gustafsson MV, Jin S, Poellinger L, Lendahl U (2008) Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci USA 105(17):6392–6397CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bui Q, Kang K (2016) Abstract P1-05-06: Essential role of notch-4/STAT3 signaling in epithelial-mesenchymal transition of tamoxifen-resistant human breast cancer. Cancer Res 76(4 Supplement):P1-05-06–P01-05-06CrossRefGoogle Scholar
  13. 13.
    Speiser J, Foreman K, Drinka E, Godellas C, Perez C, Salhadar A, Ersahin C, Rajan P (2012) Notch-1 and Notch-4 biomarker expression in triple-negative breast cancer. Int J Surg Pathol 20(2):139–145CrossRefPubMedGoogle Scholar
  14. 14.
    Ntziachristos P, Lim JS, Sage J, Aifantis I (2014) From fly wings to targeted cancer therapies: a centennial for notch signaling. Cancer Cell 25(3):318–334CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Haines N, Irvine KD (2003) Glycosylation regulates Notch signalling. Nat Rev Mol Cell Biol 4(10):786–797CrossRefPubMedGoogle Scholar
  16. 16.
    Okajima T, Irvine KD (2002) Regulation of notch signaling by o-linked fucose. Cell 111(6):893–904CrossRefPubMedGoogle Scholar
  17. 17.
    Delury C, Hart C, Brown M, Clarke N, Parkin E (2016) Stroma-induced Jagged1 expression drives PC3 prostate cancer cell migration; disparate effects of RIP-generated proteolytic fragments on cell behaviour and Notch signaling. Biochem Biophys Res Commun 472(1):255–261CrossRefPubMedGoogle Scholar
  18. 18.
    Yin L, Velazquez OC, Liu ZJ (2010) Notch signaling: emerging molecular targets for cancer therapy. Biochem Pharmacol 80(5):690–701CrossRefPubMedGoogle Scholar
  19. 19.
    Naik S, MacFarlane M, Sarin A (2015) Notch4 signaling confers susceptibility to TRAIL-induced apoptosis in breast cancer cells. J Cell Biochem 116(7):1371–1380CrossRefPubMedGoogle Scholar
  20. 20.
    Chan GK, Kleinheinz TL, Peterson D, Moffat JG (2013) A simple high-content cell cycle assay reveals frequent discrepancies between cell number and ATP and MTS proliferation assays. PLoS ONE 8(5):e63583CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Fan X, Chen X, Deng W, Zhong G, Cai Q, Lin T (2013) Up-regulated microRNA-143 in cancer stem cells differentiation promotes prostate cancer cells metastasis by modulating FNDC3B expression. BMC Cancer 13(61):1471–2407Google Scholar
  22. 22.
    Chen W, Zhang H, Wang J, Cao G, Dong Z, Su H, Zhou X, Zhang S (2013) Lentiviral-mediated gene silencing of Notch-4 inhibits in vitro proliferation and perineural invasion of ACC-M cells. Oncol Rep 29(5):1797–1804PubMedGoogle Scholar
  23. 23.
    Saini S, Majid S, Shahryari V, Tabatabai ZL, Arora S, Yamamura S, Tanaka Y, Dahiya R, Deng G (2014) Regulation of SRC kinases by microRNA-3607 located in a frequently deleted locus in prostate cancer. Mol Cancer Ther 13(7):1952–1963CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kudo-Saito C, Shirako H, Takeuchi T, Kawakami Y (2009) Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell 15(3):195–206CrossRefPubMedGoogle Scholar
  25. 25.
    Wang Z, Li Y, Banerjee S, Kong D, Ahmad A, Nogueira V, Hay N, Sarkar FH (2010) Down-regulation of Notch-1 and Jagged-1 inhibits prostate cancer cell growth, migration and invasion, and induces apoptosis via inactivation of Akt, mTOR, and NF-kappaB signaling pathways. J Cell Biochem 109(4):726–736PubMedGoogle Scholar
  26. 26.
    Bolos V, Mira E, Martinez-Poveda B, Luxan G, Canamero M, Martinez AC, Manes S, de la Pompa JL (2013) Notch activation stimulates migration of breast cancer cells and promotes tumor growth. Breast Cancer Res 15(4):R54 doi: 10.1186/bcr3447 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Wan X, Cheng C, Shao Q, Lin Z, Lu S, Chen Y (2016) CD24 promotes HCC progression via triggering Notch-related EMT and modulation of tumor microenvironment. Tumour Biol 37(5):6073–6084. doi: 10.1007/s13277-015-4442-7 CrossRefPubMedGoogle Scholar
  28. 28.
    Carvalho FL, Simons BW, Eberhart CG, Berman DM (2014) Notch signaling in prostate cancer: a moving target. Prostate 74(9):933–945. doi: 10.1002/pros.22811 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Clementz AG, Rogowski A, Pandya K, Miele L, Osipo C (2011) NOTCH-1 and NOTCH-4 are novel gene targets of PEA3 in breast cancer: novel therapeutic implications. Breast Cancer Res 13(3):R63Google Scholar
  30. 30.
    Reedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR, Lockwood G, Egan SE (2005) High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res 65(18):8530–8537CrossRefPubMedGoogle Scholar
  31. 31.
    Bell D, Hanna EY, Miele L, Roberts D, Weber RS, El-Naggar AK (2014) Expression and significance of notch signaling pathway in salivary adenoid cystic carcinoma. Ann Diagn Pathol 18(1):10–13CrossRefPubMedGoogle Scholar
  32. 32.
    Li Y, Chen L, Yang Y et al (2014) MP31-17 NOTCH 4 REGULATED, LEF1 MEDIATED PROSTATE CANCER METASTASIS AND ANDROGEN INDEPENDENCE. J Urol 191(4):e328–e329CrossRefGoogle Scholar
  33. 33.
    Yabuuchi S, Pai SG, Campbell NR, de Wilde RF, De Oliveira E, Korangath P, Streppel MM, Rasheed ZA, Hidalgo M, Maitra A, Rajeshkumar NV (2013) Notch signaling pathway targeted therapy suppresses tumor progression and metastatic spread in pancreatic cancer. Cancer Lett 335(1):41–51CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137(2):216–233CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Somnay YR, Yu XM, Lloyd RV, Leverson G, Aburjania Z, Jang S, Jaskula-Sztul R, Chen H (2016) Notch3 expression correlates with thyroid cancer differentiation, induces apoptosis, and predicts disease prognosis. Cancer 2(10):30403Google Scholar
  36. 36.
    Yun J, Pannuti A, Espinoza I, Zhu H, Hicks C, Zhu X, Caskey M, Rizzo P, D’Souza G, Backus K, Denning MF, Coon J, Sun M, Bresnick EH, Osipo C, Wu J, Strack PR, Tonetti DA, Miele L (2013) Crosstalk between PKCalpha and Notch-4 in endocrine-resistant breast cancer cells. Oncogenesis 5(2):26Google Scholar
  37. 37.
    Ding LC, She L, Zheng DL, Huang QL, Wang JF, Zheng FF, Lu YG (2010) Notch-4 contributes to the metastasis of salivary adenoid cystic carcinoma. Oncol Rep 24(2):363–368PubMedGoogle Scholar
  38. 38.
    Sekhon K, Bucay N, Majid S, Dahiya R, Saini S (2016) MicroRNAs and epithelial-mesenchymal transition in prostate cancer. Oncotarget 30(10):11708Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Jianwei Zhang
    • 1
  • Youlin Kuang
    • 2
  • Yan Wang
    • 1
  • Quanquan Xu
    • 1
  • Qinghua Ren
    • 3
  1. 1.Department of Urology SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
  2. 2.Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
  3. 3.Department of PharmacyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina

Personalised recommendations