, Volume 22, Issue 6, pp 786–799 | Cite as

Novel Triazole linked 2-phenyl benzoxazole derivatives induce apoptosis by inhibiting miR-2, miR-13 and miR-14 function in Drosophila melanogaster

  • Tanmoy Mondal
  • A. V. S. Lavanya
  • Akash Mallick
  • Tulshiram L. Dadmala
  • Ravindra M. Kumbhare
  • Utpal Bhadra
  • Manika Pal Bhadra


Apoptosis is an important phenomenon in multi cellular organisms for maintaining tissue homeostasis and embryonic development. Defect in apoptosis leads to a number of disorders like- autoimmune disorder, immunodeficiency and cancer. 21–22 nucleotides containing micro RNAs (miRNAs/miRs) function as a crucial regulator of apoptosis alike other cellular pathways. Recently, small molecules have been identified as a potent inducer of apoptosis. In this study, we have identified novel Triazole linked 2-phenyl benzoxazole derivatives (13j and 13h) as a negative regulator of apoptosis inhibiting micro RNAs (miR-2, miR-13 and miR-14) in a well established in vivo model Drosophila melanogaster where the process of apoptosis is very similar to human apoptosis. These compounds inhibit miR-2, miR-13 and miR-14 activity at their target sites, which induce an increased caspase activity, and in turn influence the caspase dependent apoptotic pathway. These two compounds also increase the mitochondrial reactive oxygen species (ROS) level to trigger apoptotic cell death.


Apoptosis Cancer Small molecule Micro RNA inhibitor 



We thank Stephen M. Cohen for micro RNA sensor fly stock. The work was supported by CSIR-XIIth 5 year plan project CSC-0111. TM thanks CSIR for his fellowship. All the authors thank P. Devender and Narasimha for maintaining the Drosophila facility, Y. Suresh for FACS.

Compliance with ethical standards

Conflict of interest

Authors declare no conflict of interest.

Supplementary material

10495_2017_1367_MOESM1_ESM.docx (752 kb)
Supplementary material 1 (DOCX 751 KB)


  1. 1.
    Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Baehrecke EH (2002) How death shapes life during development. Nat Rev Mol Cell Biol 3:779–787CrossRefPubMedGoogle Scholar
  3. 3.
    Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9:231–241CrossRefPubMedGoogle Scholar
  4. 4.
    He B, Lu N, Zhou Z (2009) Cellular and nuclear degradation during apoptosis. Curr Opin Cell Biol 21:900–912CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219CrossRefPubMedGoogle Scholar
  6. 6.
    Denton D, Aung-Htut MT, Kumar S (2013) Developmentally programmed cell death in Drosophila. Biochim Biophys Acta 1833:3499–3506CrossRefPubMedGoogle Scholar
  7. 7.
    Steller H (2008) Regulation of apoptosis in Drosophila. Cell Death Differ 15:1132–1138CrossRefPubMedGoogle Scholar
  8. 8.
    Lettre G, Hengartner MO (2006) Developmental apoptosis in C. elegans: a complex CEDnario. Nat Rev Mol Cell Biol 7:97–108CrossRefPubMedGoogle Scholar
  9. 9.
    Johnsen HL, Horvitz HR (2016) Both the apoptotic suicide pathway and phagocytosis are required for a programmed cell death in Caenorhabditis elegans. BMC Biol 14:1CrossRefGoogle Scholar
  10. 10.
    Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147:742–758CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Oliveira JB, Gupta S (2008) Disorders of apoptosis: mechanisms for autoimmunity in primary immunodeficiency diseases. J Clin Immunol 28:20–28CrossRefGoogle Scholar
  12. 12.
    Buss RR, Sun W, Oppenheim RW (2006) Adaptive roles of programmed cell death during nervous system development 1. Annu Rev Neurosci 29:1–35CrossRefPubMedGoogle Scholar
  13. 13.
    Truman JW, Bate M (1988) Spatial and temporal patterns of neurogenesis in the central nervous system of Drosophila melanogaster. Dev Biol 125:145–157CrossRefPubMedGoogle Scholar
  14. 14.
    White K, Grether ME, Abrams JM, Young L, Farrell K, Steller H (1994) Genetic control of programmed cell death in Drosophila. Science 264:677–683CrossRefPubMedGoogle Scholar
  15. 15.
    Hanahan D, Weinberg RA. (2000) The hallmarks of cancer. Cell 100:57–70.CrossRefPubMedGoogle Scholar
  16. 16.
    Evan GI, Vousden KH (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411:342–348CrossRefPubMedGoogle Scholar
  17. 17.
    Horvitz HR (1999) Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Cancer Res 59:1701s–1706sPubMedGoogle Scholar
  18. 18.
    Xu D, Woodfield SE, Lee TV, Fan Y, Antonio C, Bergmann A (2009) Genetic control of programmed cell death (apoptosis) in Drosophila. Fly 3:78–90CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Tan Y, Yamada-Mabuchi M, Arya R et al (2011) Coordinated expression of cell death genes regulates neuroblast apoptosis. Development 138:2197–2206CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Pinto-Teixeira F, Konstantinides N, Desplan C (2016) Programmed cell death acts at different stages of Drosophila neurodevelopment to shape the central nervous system. FEBS Lett 590:2435–2453CrossRefPubMedGoogle Scholar
  21. 21.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRefPubMedGoogle Scholar
  22. 22.
    Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW (2013) Cancer genome landscapes. Science 339:1546–1558CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Richardson H, Kumar S (2002) Death to flies: Drosophila as a model system to study programmed cell death. J Immunol Methods 265:21–38CrossRefPubMedGoogle Scholar
  24. 24.
    Morey M, Corominas M, Serras F (2003) DIAP1 suppresses ROS-induced apoptosis caused by impairment of the selD/sps1 homolog in Drosophila. J Cell Sci 116:4597–4604CrossRefPubMedGoogle Scholar
  25. 25.
    Farazi TA, Juranek SA, Tuschl T. (2008) The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development 135:1201–1214CrossRefPubMedGoogle Scholar
  26. 26.
    Nishikura K (2001) A short primer on RNAi: RNA-directed RNA polymerase acts as a key catalyst. Cell 107:415–418CrossRefPubMedGoogle Scholar
  27. 27.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297CrossRefPubMedGoogle Scholar
  28. 28.
    Kim VN (2005) Small RNAs: classification, biogenesis, and function. Mol cells 19:1–15CrossRefPubMedGoogle Scholar
  29. 29.
    Zhang B, Pan X, Cobb GP, Anderson TA (2007) microRNAs as oncogenes and tumor suppressors. Dev Biol 302:1–12CrossRefPubMedGoogle Scholar
  30. 30.
    Kent O, Mendell J (2006) A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene 25:6188–6196CrossRefPubMedGoogle Scholar
  31. 31.
    Venkataraman S, Birks DK, Balakrishnan I et al (2013) MicroRNA 218 acts as a tumor suppressor by targeting multiple cancer phenotype-associated genes in medulloblastoma. J Biol Chem 288:1918–1928CrossRefPubMedGoogle Scholar
  32. 32.
    Ebert MS, Sharp PA (2012) Roles for microRNAs in conferring robustness to biological processes. Cell 149:515–524CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Su Z, Yang Z, Xu Y, Chen Y, Yu Q (2015) MicroRNAs in apoptosis, autophagy and necroptosis. Oncotarget 6:8474CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Lima RT, Busacca S, Almeida GM, Gaudino G, Fennell DA, Vasconcelos MH (2011) MicroRNA regulation of core apoptosis pathways in cancer. Eur J Cancer 47:163–174CrossRefPubMedGoogle Scholar
  35. 35.
    Pileczki V, Cojocneanu-Petric R, Maralani M, Neagoe IB, Sandulescu R (2016) MicroRNAs as regulators of apoptosis mechanisms in cancer. Clujul Med 89:50–55CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Bhadra U, Mondal T, Bag I et al (2015) HDAC inhibitor misprocesses bantam oncomiRNA, but stimulates hid induced apoptotic pathway. Sci Rep 5:14747CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Rubin GM, Lewis EB (2000) A brief history of Drosophila’s contributions to genome research. Science 287:2216–2218CrossRefPubMedGoogle Scholar
  38. 38.
    Bier E (2005) Drosophila, the golden bug, emerges as a tool for human genetics. Nat Rev Genet 6:9–23CrossRefPubMedGoogle Scholar
  39. 39.
    Feany MB, Bender WW (2000) A Drosophila model of Parkinson’s disease. Nature 404:394–398CrossRefPubMedGoogle Scholar
  40. 40.
    Trinh K, Moore K, Wes PD et al (2008) Induction of the phase II detoxification pathway suppresses neuron loss in Drosophila models of Parkinson’s disease. J Neurosci 28:465–472CrossRefPubMedGoogle Scholar
  41. 41.
    Brumby AM, Richardson HE (2005) Using Drosophila melanogaster to map human cancer pathways. Nat Rev Cancer 5:626–639CrossRefPubMedGoogle Scholar
  42. 42.
    Wyllie A, Morris R, Smith A, Dunlop D (1984) Chromatin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macromolecular synthesis. J Pathol 142:67–77CrossRefPubMedGoogle Scholar
  43. 43.
    Modjtahedi N, Giordanetto F, Madeo F, Kroemer G (2006) Apoptosis-inducing factor: vital and lethal. Trends Cell Biol 16:264–272CrossRefPubMedGoogle Scholar
  44. 44.
    Susin SA, Daugas E, Ravagnan L et al (2000) Two distinct pathways leading to nuclear apoptosis. J Exp Med 192:571–580CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Joza N, Susin SA, Daugas E et al (2001) Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410:549–554CrossRefPubMedGoogle Scholar
  46. 46.
    Meier P, Finch A, Evan G (2000) Apoptosis in development. Nature 407:796–801CrossRefPubMedGoogle Scholar
  47. 47.
    Koto A, Miura M. (2011) Who lives and who dies: Role of apoptosis in quashing developmental errors. Commun Integr Biol 4:495–497CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Depaepe V, Suarez-Gonzalez N, Dufour A et al (2005) Ephrin signalling controls brain size by regulating apoptosis of neural progenitors. Nature 435:1244–1250CrossRefPubMedGoogle Scholar
  49. 49.
    Pushpavalli SN, Sarkar A, Ramaiah MJ et al (2016) Drosophila MOF regulates DIAP1 and induces apoptosis in a JNK dependent pathway. Apoptosis 21:269–282CrossRefPubMedGoogle Scholar
  50. 50.
    Li Z, Rana TM. (2014) Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov 13:622–638CrossRefPubMedGoogle Scholar
  51. 51.
    Stark A, Brennecke J, Russell RB, Cohen SM (2003) Identification of Drosophila microRNA targets. PLoS Biol 1:e60CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Leaman D, Chen PY, Fak J et al (2005) Antisense-mediated depletion reveals essential and specific functions of microRNAs in Drosophila development. Cell 121:1097–1108CrossRefPubMedGoogle Scholar
  53. 53.
    Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of microRNA–target recognition. PLoS Biol 3:e85CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Lai EC, Tam B, Rubin GM. (2005) Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. Genes Dev 19:1067–1080CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Xu P, Vernooy SY, Guo M, Hay BA (2003) The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 13:790–795CrossRefPubMedGoogle Scholar
  56. 56.
    Melov S, Ravenscroft J, Malik S et al (2000) Extension of life-span with superoxide dismutase/catalase mimetics. Science 289:1567–1569CrossRefPubMedGoogle Scholar
  57. 57.
    Curtin JF, Donovan M, Cotter TG (2002) Regulation and measurement of oxidative stress in apoptosis. J Immunol Methods 265:49–72CrossRefPubMedGoogle Scholar
  58. 58.
    Jovanovic M, Hengartner M (2006) miRNAs and apoptosis: RNAs to die for. Oncogene 25:6176–6187CrossRefPubMedGoogle Scholar
  59. 59.
    Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114CrossRefPubMedGoogle Scholar
  60. 60.
    Dong C, Ji M, Ji C (2009) Micro-RNAs and their potential target genes in leukemia pathogenesis. Cancer Biol Ther 8:200–205CrossRefPubMedGoogle Scholar
  61. 61.
    Cho WC (2010) MicroRNAs in cancer—from research to therapy. Biochimica et Biophysica Acta (BBA)-Rev Cancer 1805:209–217CrossRefGoogle Scholar
  62. 62.
    Mishra PJ, Merlino G (2009) MicroRNA reexpression as differentiation therapy in cancer. J Clin Invest 119:2119–2123PubMedPubMedCentralGoogle Scholar
  63. 63.
    Reddy SDN, Gajula RP, Pakala SB, Kumar R. (2010) MicroRNAs and cancer therapy: the next wave or here to stay? Cancer Biol Ther 9:479–482CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Ceribelli A, Yao B, Dominguez-Gutierrez PR, Nahid MA, Satoh M, Chan EK (2011) MicroRNAs in systemic rheumatic diseases. Arthritis Res Ther 13:1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Tanmoy Mondal
    • 1
    • 4
  • A. V. S. Lavanya
    • 1
  • Akash Mallick
    • 1
  • Tulshiram L. Dadmala
    • 2
  • Ravindra M. Kumbhare
    • 2
  • Utpal Bhadra
    • 3
  • Manika Pal Bhadra
    • 1
    • 4
  1. 1.Centre for Chemical BiologyCSIR-Indian Institute of Chemical TechnologyHyderabadIndia
  2. 2.Fluoroorganic DivisionCSIR-Indian Institute of Chemical TechnologyHyderabadIndia
  3. 3.Functional Genomics and Gene silencing GroupCSIR-Centre for Cellular and Molecular BiologyHyderabadIndia
  4. 4.Academy of Scientific and Innovative Research (AcSIR)HyderabadIndia

Personalised recommendations