, Volume 22, Issue 6, pp 852–864 | Cite as

A novel non-ATP competitive FGFR1 inhibitor with therapeutic potential on gastric cancer through inhibition of cell proliferation, survival and migration

  • Jianzhang Wu
  • Xiaojing Du
  • Wulan Li
  • Yangyang Zhou
  • Encheng Bai
  • Yanting Kang
  • Qiuxiang Chen
  • Weitao Fu
  • Di Yun
  • Qing Xu
  • Peihong Qiu
  • Rong Jin
  • Yuepiao Cai
  • Guang Liang


Fibroblast growth factor receptor 1 (FGFR1), belonging to receptor tyrosine kinases (RTKs), possesses various biological functions. Over-expression of FGFR1 has been observed in multiple human malignancies. Hence, targeting FGFR1 is an attractive prospect for the advancement of cancer treatment options. Here, we present a novel small molecular FGFR1 inhibitor L16H50, which can inhibit FGFR1 kinase in an ATP-independent manner. It potently inhibits FGFR1-mediated signaling in a gastric cancer cell line, resulting in inhibition of cell growth, survival and migration. It also displays an outstanding anti-tumor activity in a gastric cancer xenograft tumor model by targeting FGFR1 signaling. These results show that L16H50 is a potent non-ATP-competitive FGFR1 inhibitor and may provide strong rationale for its evaluation in gastric cancer patients.


Gastric cancer Non-ATP competitive FGFR1 inhibitor Proliferation Survival Migration 



This work was supported by the National Natural Science Foundation of China (Grant Nos. 81402839, 81473242 and 81272462) the ZheJiang Province Natural Science Fund of China (Grant Nos. LY17H160059, LY14H160044) and the Technology Foundation for Medical Science of Zhejiang Province (Grant Nos. 2012KYA129), Granted by the Opening Project of Zhejiang Provincial Top Key Discipline of Pharmaceutical Sciences.

Compliance with ethical standards

Conflict of interest


Supplementary material

10495_2017_1361_MOESM1_ESM.eps (1.3 mb)
Supplementary material 1 (EPS 1355 KB)
10495_2017_1361_MOESM2_ESM.eps (5 mb)
Supplementary material 2 (EPS 5140 KB)
10495_2017_1361_MOESM3_ESM.eps (770 kb)
Supplementary material 3 (EPS 769 KB)
10495_2017_1361_MOESM4_ESM.eps (865 kb)
Supplementary material 4 (EPS 865 KB)
10495_2017_1361_MOESM5_ESM.eps (65.4 mb)
Supplementary material 5 (EPS 66992 KB)
10495_2017_1361_MOESM6_ESM.eps (26.4 mb)
Supplementary material 6 (EPS 27034 KB)
10495_2017_1361_MOESM7_ESM.doc (20 kb)
Supplementary material 7 (DOC 20 KB)


  1. 1.
    Turner N, Grose R (2010) Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 10:116–129CrossRefPubMedGoogle Scholar
  2. 2.
    Helsten T, Schwaederle M, Kurzrock R (2015) Fibroblast growth factor receptor signaling in hereditary and neoplastic disease: biologic and clinical implications. Cancer Metast Rev 34:479–496CrossRefGoogle Scholar
  3. 3.
    Boilly B, Vercoutter-Edouart AS, Hondermarck H, Nurcombe V, Le Bourhis X (2000) FGF signals for cell proliferation and migration through different pathways. Cytokine Growth Factor Rev 11:295–302CrossRefPubMedGoogle Scholar
  4. 4.
    Cross MJ, Hodgkin MN, Roberts S, Landgren E, Wakelam MJ, Claesson-Welsh L (2000) Tyrosine 766 in the fibroblast growth factor receptor-1 is required for FGF-stimulation of phospholipase C, phospholipase D, phospholipase A(2), phosphoinositide 3-kinase and cytoskeletal reorganisation in porcine aortic endothelial cells. J Cell Sci 113:643–651PubMedGoogle Scholar
  5. 5.
    Weiss J, Sos ML, Seidel D, Peifer M, Zander T, Heuckmann JM et al (2010) Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer. Sci Transl Med 2:62ra93CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Dienstmann R, Rodon J, Prat A, Perez-Garcia J, Adamo B, Felip E, Cortes J, Iafrate AJ, Nuciforo P, Tabernero J (2014) Genomic aberrations in the FGFR pathway: opportunities for targeted therapies in solid tumors. Ann Oncol 25:552–563CrossRefPubMedGoogle Scholar
  7. 7.
    Freier K, Schwaenen C, Sticht C, Flechtenmacher C, Muhling J, Hofele C, Radlwimmer B, Lichter P, Joos S (2007) Recurrent FGFR1 amplification and high FGFR1 protein expression in oral squamous cell carcinoma (OSCC). Oral Oncol 43:60–66CrossRefPubMedGoogle Scholar
  8. 8.
    Elbauomy Elsheikh S, Green AR, Lambros MB, Turner NC, Grainge MJ, Powe D, Ellis IO, Reis-Filho JS (2007) FGFR1 amplification in breast carcinomas: a chromogenic in situ hybridisation analysis. Breast Cancer Res 9:R23CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Fischbach A, Rogler A, Erber R, Stoehr R, Poulsom R, Heidenreich A et al (2015) Fibroblast growth factor receptor (FGFR) gene amplifications are rare events in bladder cancer. Histopathology 66:639–649CrossRefPubMedGoogle Scholar
  10. 10.
    Lehnen NC, von Massenhausen A, Kalthoff H, Zhou H, Glowka T, Schutte U et al (2013) Fibroblast growth factor receptor 1 gene amplification in pancreatic ductal adenocarcinoma. Histopathology 63:157–166CrossRefPubMedGoogle Scholar
  11. 11.
    Murase H, Inokuchi M, Takagi Y, Kato K, Kojima K, Sugihara K (2014) Prognostic significance of the co-overexpression of fibroblast growth factor receptors 1, 2 and 4 in gastric cancer. Mol Clin Oncol 2:509–517PubMedPubMedCentralGoogle Scholar
  12. 12.
    Shin EY, Lee BH, Yang JH, Shin KS, Lee GK, Yun HY, Song YJ, Park SC, Kim EG (2000) Up-regulation and co-expression of fibroblast growth factor receptors in human gastric cancer. J Cancer Res Clin Oncol 126:519–528CrossRefPubMedGoogle Scholar
  13. 13.
    Schafer MH, Lingohr P, Strasser A, Lehnen NC, Braun M, Perner S, Holler T, Kristiansen G, Kalff JC, Gutgemann I (2015) Fibroblast growth factor receptor 1 gene amplification in gastric adenocarcinoma. Hum Pathol 46:1488–1495CrossRefPubMedGoogle Scholar
  14. 14.
    Nakanishi Y, Akiyama N, Tsukaguchi T, Fujii T, Sakata K, Sase H et al (2014) The fibroblast growth factor receptor genetic status as a potential predictor of the sensitivity to CH5183284/Debio 1347, a novel selective FGFR inhibitor. Mol Cancer Ther 13:2547–2558CrossRefPubMedGoogle Scholar
  15. 15.
    Wang Y, Cai Y, Ji J, Liu Z, Zhao C, Zhao Y et al (2014) Discovery and identification of new non-ATP competitive FGFR1 inhibitors with therapeutic potential on non-small-cell lung cancer. Cancer Lett 344:82–89CrossRefPubMedGoogle Scholar
  16. 16.
    Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Eathiraj S, Palma R, Hirschi M, Volckova E, Nakuci E, Castro J, Chen CR, Chan TCK, France DS, Ashwell M (2011) A novel mode of protein kinase inhibition exploiting hydrophobic motifs of autoinhibited kinases: discovery of ATP-independent inhibitors of fibroblast growth factor receptor. J Bio Chem 286:20677–20687CrossRefGoogle Scholar
  18. 18.
    DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, San Carlos, USAGoogle Scholar
  19. 19.
    Cervantes A, Roda D, Tarazona N, Rosello S, Perez-Fidalgo JA (2013) Current questions for the treatment of advanced gastric cancer. Cancer Treat Rev 39:60–67CrossRefPubMedGoogle Scholar
  20. 20.
    Fujitani K (2013) Overview of adjuvant and neoadjuvant therapy for resectable gastric cancer in the East. Dig Surg 30:119–129CrossRefPubMedGoogle Scholar
  21. 21.
    Gomez-Martin C, Plaza JC, Pazo-Cid R, Salud A Pons F, Fonseca P et al (2013) Level of HER2 gene amplification predicts response and overall survival in HER2-positive advanced gastric cancer treated with trastuzumab. J Clin Oncol 31:4445–4452CrossRefPubMedGoogle Scholar
  22. 22.
    Wong H, Yau T (2012) Targeted therapy in the management of advanced gastric cancer: are we making progress in the era of personalized medicine? Oncologist 17:346–358CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Inokuchi M, Fujimori Y, Otsuki S, Sato Y, Nakagawa M, Kojima K (2015) Therapeutic targeting of fibroblast growth factor receptors in gastric cancer. Gastroenterol Res Pract 2015:796380CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Liakakos T, Fatourou E, Ziogas D, Lykoudis E, Roukos DH (2008) Targeting VEGF, EGFR, and other interacting pathways for gastric cancer-promises and reality. Ann Surg Oncol 15:2981–2982 (author reply 2983–2985)CrossRefPubMedGoogle Scholar
  25. 25.
    National Comprehensive Cancer Network (2015) NCCN guidelines: Gastric Cancers, version 1Google Scholar
  26. 26.
    Xu C, Li W, Qiu P, Xia, Y, Du X, Wang F et al (2015) The therapeutic potential of a novel non-ATP-competitive fibroblast growth factor receptor 1 inhibitor on gastric cancer. Anticancer Drugs 26:379–387CrossRefPubMedGoogle Scholar
  27. 27.
    Wu J, Ji J, Weng B, Qiu P, Kanchana K, Wei T, Wang Y, Cai Y, Li X, Liang G (2014) Discovery of novel non-ATP competitive FGFR1 inhibitors and evaluation of their anti-tumor activity in non-small cell lung cancer in vitro and in vivo. Oncotarget 5:4543–4553CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Zhang J, Zhang L, Su X, Li M, Xie L, Malchers F et al (2012) Translating the therapeutic potential of AZD4547 in FGFR1-amplified non-small cell lung cancer through the use of patient-derived tumor xenograft models. Clin Cancer Res 18:6658–6667CrossRefPubMedGoogle Scholar
  29. 29.
    Yang F, Zhang Y, Ressler SJ, Ittmann MM, Ayala GE, Dang TD, Wang F, Rowley DR (2013) FGFR1 is essential for prostate cancer progression and metastasis. Cancer Res 73:3716–3724CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Andre F, Cortes J (2015) Rationale for targeting fibroblast growth factor receptor signaling in breast cancer. Breast Cancer Res Treat 150:1–8CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Tsimafeyeu I, Bratslavsky G (2015) Fibroblast growth factor receptor 1 as a target for the therapy of renal cell carcinoma. Int Soc Cell 88:321–331Google Scholar
  32. 32.
    Agelopoulos K, Richter GH, Schmidt E, Dirksen U, von Heyking K, Moser B et al (2015) Deep sequencing in conjunction with expression and functional analyses reveals activation of FGFR1 in ewing sarcoma. Clin Cancer Res 21:4935–4946CrossRefPubMedGoogle Scholar
  33. 33.
    Liang G, Liu Z, Wu J, Cai Y, Li X (2012) Anticancer molecules targeting fibroblast growth factor receptors. Trends Pharmacol Sci 33:531–541CrossRefPubMedGoogle Scholar
  34. 34.
    Kumar SB, Narasu L, Gundla R, Gundla R, Dayam R, JARP S (2013) Fibroblast growth factor receptor inhibitors. Curr Pharm Des 19:687–701CrossRefPubMedGoogle Scholar
  35. 35.
    Meyer AN, McAndrew CW, Donoghue DJ (2008) Nordihydroguaiaretic acid inhibits an activated fibroblast growth factor receptor 3 mutant and blocks downstream signaling in multiple myeloma cells. Cancer Res 68:7362–7370CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Krejci P, Murakami S, Prochazkova J, Trantirek L, Chlebova K, Ouyang Z et al (2010) NF449 is a novel inhibitor of fibroblast growth factor receptor 3 (FGFR3) signaling active in chondrocytes and multiple myeloma cells. J Bio Chem 285:20644–20653CrossRefGoogle Scholar
  37. 37.
    Reis-Filho JS, Simpson PT, Turner NC, Lambros MB, Jones C, Mackay A (2006) FGFR1 emerges as a potential therapeutic target for lobular breast carcinomas. Clin Cancer Res 12:6652–6662CrossRefPubMedGoogle Scholar
  38. 38.
    Wen D, Li S, Ji F, Cao H, Jiang W, Zhu J, Fang X (2013) miR-133b acts as a tumor suppressor and negatively regulates FGFR1 in gastric cancer. Tumour Biol 34:793–803CrossRefPubMedGoogle Scholar
  39. 39.
    Zhao M, Ross JT, Itkin T, Perry JM, Venkatraman A, Haug JS et al (2012) FGF signaling facilitates postinjury recovery of mouse hematopoietic system. Blood 120:1831–1842CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Jianzhang Wu
    • 1
  • Xiaojing Du
    • 2
  • Wulan Li
    • 1
    • 3
  • Yangyang Zhou
    • 1
    • 2
  • Encheng Bai
    • 1
    • 2
  • Yanting Kang
    • 1
    • 2
  • Qiuxiang Chen
    • 1
    • 2
  • Weitao Fu
    • 1
  • Di Yun
    • 1
  • Qing Xu
    • 4
  • Peihong Qiu
    • 1
  • Rong Jin
    • 2
    • 5
  • Yuepiao Cai
    • 1
  • Guang Liang
    • 1
  1. 1.Chemical Biology Research Center, College of Pharmaceutical SciencesWenzhou Medical UniverstiyWenzhouChina
  2. 2.Department of Digestive DiseasesThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
  3. 3.College of Information Science and Computer Engineering, the First Clinical Medical CollegeWenzhou Medical UniversityWenzhouChina
  4. 4.College of Chemistry and Materials EngineeringWenzhou UniversityWenzhouChina
  5. 5.Department of EpidemiologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina

Personalised recommendations