Skip to main content
Log in

Insights on the involvement of (–)-epigallocatechin gallate in ER stress-mediated apoptosis in age-related macular degeneration

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Endoplasmic reticulum (ER) stress-mediated apoptosis is a well-known factor in the pathogenesis of age-related macular degeneration (AMD). ER stress leads to accumulation of misfolded proteins, which in turn activates unfolded protein response (UPR) of the cell for its survival. The prolonged UPR of ER stress promotes cell death; however, the transition between adaptation and ER stress-induced apoptosis has not been clearly understood. Hence, the present study investigates the regulatory effect of (–)-epigallocatechin gallate (EGCG) on ER stress-induced by hydrogen peroxide (H2O2) and disturbance of calcium homeostasis by thapsigargin (TG) in mouse retinal pigment epithelial (MRPE) cells. The oxidant molecules influenced MRPE cells showed an increased level of intracellular calcium [Ca2+]i in ER and transferred to mitochondria through ER-mitochondrial tether site then increased ROS production. EGCG restores [Ca2+]i homeostasis by decreasing ROS production through inhibition of prohibitin1 which regulate ER-mitochondrial tether site and inhibit apoptosis. Effect of EGCG on ER stress-mediated apoptosis was elucidated by exploring the UPR signalling pathways. EGCG downregulated GRP78, CHOP, PERK, ERO1α, IRE1α, cleaved PARP, cleaved caspase 3, caspase 12 and upregulated expression of calnexinin MRPE cells. In addition to this, inhibition of apoptosis by EGCG was also confirmed with expression of proteins Akt, PTEN and GSK3β. MRPE cells with EGCG upregulates phosphorylation of Akt at ser473 and phospho ser380 of PTEN, but phosphorylation at ser9 of GSK3β was inhibited. Further, constitutively active (myristoylated) CA-Akt transfected in MRPE cells had an increased Akt activity in EGCG influenced cells. These findings strongly suggest that antioxidant molecules inhibit cell death through the proper balancing of [Ca2+]i and ROS production in order to maintain UPR of ER in MRPE cells. Thus, modulation of UPR signalling may provide a potential target for the therapeutic approaches of AMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lim LS, Mitchell P, Seddon JM, Holz FG, Wong TY (2012) Age-related macular degeneration. The Lancet 379:1728–1738

    Article  Google Scholar 

  2. Swaroop A, Chew EY, Rickman CB, Abecasis GR (2009) Unraveling a multifactorial late-onset disease: from genetic susceptibility to disease mechanisms for age-related macular degeneration. Annu Rev Genomics Hum Genet 10:19–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ambati J, Atkinson JP, Gelfand BD (2013) Immunology of age-related macular degeneration. Natrev Immunol 13:438–451

    Article  CAS  Google Scholar 

  4. Fritsche LG, Fariss RN, Stambolian D, Abecasis GR, Curcio CA, Swaroop A (2014) Age-related macular degeneration: genetics and biology coming together. Annu Rev Genomics Hum Genet 15:151–171

  5. Hogg RE, Chakravarthy U (2006) Visual function and dysfunction in early and late age-related maculopathy. Prog Retin Eye Res 25:249–276

    Article  CAS  PubMed  Google Scholar 

  6. Zarbin MA, Rosenfeld PJ (2010) Pathway-based therapies for age-related macular degeneration: an integrated survey of emerging treatment alternatives. Retina 30:1350–1367

    Article  PubMed  Google Scholar 

  7. Whitcup SM, Sodhi A, Atkinson JP, Holers VM, Sinha D, Rohrer B, Dick AD (2013) The role of the immune response in age-related macular degeneration. Int J Inflam 2013:348092

    PubMed  PubMed Central  Google Scholar 

  8. Sunness JS (1999) The natural history of geographic atrophy, the advanced atrophic form of age-related macular degeneration. Mol Vis 5:25

    CAS  PubMed  Google Scholar 

  9. Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85:845–881

    Article  CAS  PubMed  Google Scholar 

  10. Causin P, Guidoboni G, Malgaroli F, Sacco R, Harris A (2015) Blood flow mechanics and oxygen transport and delivery in the retinal microcirculation: multiscale mathematical modeling and numerical simulation. Biomechanics Modeling Mechanobiol 15:525–542

    Article  Google Scholar 

  11. Saadat KA, Murakami Y, Tan X, Nomura Y, Yasukawa T, Okada E, Ikeda Y, Yanagi Y (2014) Inhibition of autophagy induces retinal pigment epithelial cell damage by the lipofuscinfluorophore A2E. FEBS Open Bio 15:1007–1014

    Article  Google Scholar 

  12. Sur A, Kesaraju S, Prentice H, Ayyanathan K, Baronas-Lowell D, Zhu D, Hinton DR, Blanks J, Weissbach H (2014) Pharmacological protection of retinal pigmented epithelial cells by sulindac involves PPAR-α. Proc Natl Acad Sci USA 111:16754–16759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. He Y, Leung KW, Ren Y, Pei J, Ge J, Tombran-Tink J (2014) PEDF improves mitochondrial function in RPE cells during oxidative stress. Invest Ophthalmol Vis Sci 55:6742–6755

    Article  CAS  PubMed  Google Scholar 

  14. Abrahan CE, Miranda GE, Agnolazza DL, Politi LE, Rotstein NP (2010) Synthesis of sphingosine is essential for oxidative stress-induced apoptosis of photoreceptors. Invest Ophthalmol Vis Sci 51: 1171–1180

    Article  PubMed  Google Scholar 

  15. Zarbin MA (2004) Current concepts in the pathogenesis of age-related macular degeneration. Arch Ophthalmol 122:598–614

    Article  PubMed  Google Scholar 

  16. He S, Yaung J, Kim YH, Barron E, Ryan SJ, Hinton DR (2008) Endoplasmic reticulum stress induced by oxidative stress in retinal pigment epithelial cells. Graefes Arch Clin Exp Ophthalmol 246:677–683

    Article  CAS  PubMed  Google Scholar 

  17. Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789

    Article  PubMed  Google Scholar 

  18. Brewster JL, Linseman DA, Bouchard RJ, Loucks FA, Precht TA, Esch EA, Heidenreich KA (2006) Endoplasmic reticulum stress and trophic factor withdrawal activate distinct signalling cascades that induce glycogen synthase kinase-3β and a caspase-9-dependent apoptosis in cerebellar granule neurons. Mol Cell Neurosci 32:242–253

    Article  CAS  PubMed  Google Scholar 

  19. Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7:880–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Logue SE, Cleary P, Saveljeva S, Samali A (2013) New directions in ER stress-induced cell death. Apoptosis 18:537–546

    Article  PubMed  Google Scholar 

  21. Zhang SX, Sanders E, Fliesler SJ, Wang JJ (2014) Endoplasmic reticulum stress and the unfolded protein responses in retinal degeneration. Exp Eye Res 125:30–40

    Article  CAS  PubMed  Google Scholar 

  22. Nagle DG, Ferreira D, Zhou YD (2006) Epigallocatechin-3-gallate (EGCG): chemical and biomedical perspectives. Phytochemistry 67:1849–1855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee YW, Lee WH, Kim PH (2010) Oxidative mechanisms of IL-4-induced IL-6 expression in vascularendothelium. Cytokine 49:73–79

    Article  CAS  PubMed  Google Scholar 

  24. Chan CM, Huang JH, Lin HH, Chiang HS, Chen BH, Hong JY, Hung CF (2008) Protective effects of (–)-epigallocatechin gallate on UVA-induced damage in ARPE19 cells. Mol Vis 14:2528

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang SW, Lee BR, Koh JW (2007) Protective effects of epigallocatechin gallate after UV irradiation in cultured human retinal pigment epithelial cells. Korean J Ophthalmol 21:232–237

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chen C, Cano M, Wang JJ, Li J, Huang C, Yu Q, Herbert TP, Handa JT, Zhang SX (2014) Role of unfolded protein response dysregulation in oxidative injury of retinal pigment epithelial cells. Antioxid Redox Signal 20:2091–2106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Juel HB, Faber C, Svendsen SG, Vallejo AN, Nissen MH (2013). Inflammatory cytokines protect retinal pigment epithelial cells from oxidative stress-induced death. PLoS One 8:e64619

    Article  PubMed  PubMed Central  Google Scholar 

  28. Karthikeyan B, Arun A, Harini L, Sundar K, Kathiresan T (2016) Role of ZnS Nanoparticles on endoplasmic reticulum stress-mediated Apoptosis in retinal pigment epithelial cells. Biol Trace Elem Res 170:390–400

    Article  CAS  PubMed  Google Scholar 

  29. Olchawa MM, Herrnreiter AM, Pilat AK, Skumatz CM, Niziolek-Kierecka M, Burke JM, Sarna TJ (2015) Zeaxanthin and α-tocopherol reduce the inhibitory effects of photodynamic stress on phagocytosis by ARPE-19 cells. Free Radic Biol Med 89:873–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hanus J, Kolkin A, Chimienti J, Botsay S, Wang S (2015) 4-Acetoxyphenol prevents RPE oxidative stress-induced necrosis by functioning as an NRF2 stabilizer. Invest Ophthalmol Vis Sci 56:5048–5059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13:89–102

    CAS  PubMed  Google Scholar 

  32. Karthikeyan B, Kalishwaralal K, Sheikpranbabu S, Deepak V, Haribalaganesh R, Gurunathan S (2010) Gold nanoparticles down regulate VEGF-and IL-1β-induced cell proliferation through Src kinase in Retinal pigment epithelial cells. Exp Eye Res 91:769–778

    Article  CAS  PubMed  Google Scholar 

  33. Lee JH, Moon JH, Kim SW, Jeong JK, Nazim UM, Lee YJ, Seol JW, Park SY (2015) EGCG-mediated autophagy flux has a neuroprotection effect via a class III histone deacetylase in primary neuron cells. Oncotarget 6:9701–9717

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mandel SA, Amit T, Kalfon L, Reznichenko L, Weinreb O, Youdim MB (2008) Cell signaling pathways and iron chelation in the neurorestorative activity of green tea polyphenols: special reference to epigallocatechin gallate (EGCG). J Alzheimers Dis 15:211–222

    Article  CAS  PubMed  Google Scholar 

  35. Cheng CWJ, Huang HC, Chen WJ, Huang CN, Peng CH, Lin CL (2015) Epigallocatechin gallate attenuates amyloid β-induced inflammation and neurotoxicity in EOC 13.31 microglia. Eur J Pharmacol 770:16–24

    Article  Google Scholar 

  36. Simo R, Villarroel M, Corraliza L, Hernandez C, Garcia-Ramirez M (2010) The retinal pigment epithelium: something more than a constituent of the blood-retinal barrier–implications for the pathogenesis of diabetic retinopathy. J Biomed Biotechnol 2010:190724

    Article  PubMed  PubMed Central  Google Scholar 

  37. Brantley MA, Osborn MP, Sanders BJ, Rezaei KA, Lu P, Li C, Milne GL, Cai J, Sternberg P (2012) Plasma biomarkers of oxidative stress and genetic variants in age-related macular degeneration. Am J Ophthalmol 153:460–467

    Article  CAS  PubMed  Google Scholar 

  38. Yao J, Liu X, Yang Q, Zhuang M, Wang F, Chen X, Hang H, Zhang W, Liu Q (2013) Proteomic analysis of the aqueous humor in patients with wet age-related macular degeneration. Proteomics Clin Appl 7:550–560

    Article  CAS  PubMed  Google Scholar 

  39. Salminen A, Kauppinen A, Hyttinen JM, Toropainen E, Kaarniranta K (2010) Endoplasmic reticulum stress in age-related macular degeneration: trigger for neovascularization. Mol Med 16:535–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bae JH, Mun KC, Park WK, Lee SR, Suh SI, Baek WK, Yim MB, Kwon TK, Song D (2002) EGCG attenuates AMPA-induced intracellular calcium increase in hippocampal neurons. Biochem Biophys Res Commun 290:1506–1512

    Article  CAS  PubMed  Google Scholar 

  41. Choi YT, Jung CH, Lee SR, Bae JH, Baek WK, Suh MH, Park JH, Park CW, Suh SI (2001) (–)-Epigallocatechin gallate attenuates β–amyloid induced neurotoxicity in cultured hippocampal neurons. Life Sci 70:603–614

    Article  CAS  PubMed  Google Scholar 

  42. Theiss AL, Sitaraman SV (2011) The role and therapeutic potential of prohibitin in disease. Biochim Biophys Acta 1813:1137–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kathiria AS, Butcher LD, Feagins LA, Souza RF, Boland CR, Theiss AL (2012) Prohibitin 1 modulates mitochondrial stress-related autophagy in human colonic epithelial cells. PLoS One 7:e31231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Libby RT, Gould DB (2010) Endoplasmic reticulum stress as a primary pathogenic mechanism leading to age-related macular degeneration. Adv Exp Med Biol 664:403–409

    Article  PubMed  PubMed Central  Google Scholar 

  45. Brown MK, Naidoo N (2012) The endoplasmic reticulum stress response in aging and age-related diseases. Front Physiol 16:263

    Google Scholar 

  46. Goetz JG, Genty H, St-Pierre P, Dang T, Joshi B, Sauvé R, Vogl W, Nabi IR (2007) Reversible interactions between smooth domains of the endoplasmic reticulum and mitochondria are regulated by physiological cytosolic Ca2+ levels. Cell Sci 120:3553–3564

    Article  CAS  Google Scholar 

  47. Huber AL, Lebeau J, Guillaumot P, Pétrilli V, Malek M, Chilloux J, Fauvet F, Payen L, Kfoury A, Renno T, Chevet E, Manié SN (2013) p58IPK-mediated attenuation of the proapoptotic PERK-CHOP pathway allows malignant progression upon low glucose. Mol Cell 49:1049–1059

    Article  CAS  PubMed  Google Scholar 

  48. Khan N, Afaq F, Saleem M, Ahmad N, Mukhtar H (2006) Targeting multiple signaling pathways by green tea polyphenol (–)-epigallocatechin-3-gallate. Cancer res 66:2500–2505

    Article  CAS  PubMed  Google Scholar 

  49. Higdon JV, Frei B (2003) Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr 43:89–143

    Article  CAS  PubMed  Google Scholar 

  50. Szegezdi E, Fitzgerald U, Samali A (2003) Caspase-12 and ER-stress-mediated apoptosis: the story so far. Ann NY Acad Sci 1010: 186–194

    Article  CAS  PubMed  Google Scholar 

  51. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β. Nature 403:98–103

    Article  CAS  PubMed  Google Scholar 

  52. Karthikeyan B, Harini L, Sundar K, Kathiresan T (2016) Cytotoxic effect of ZnS nanoparticles on primary mouse retinal pigment epithelial cells. Artif Cells Nanomed Biotechnol 44:1764–1773

  53. Hu P, Han Z, Couvillon AD, Exton JH (2004) Critical role of endogenous Akt/IAPs and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death. J BiolChem 279:49420–49429

    CAS  Google Scholar 

  54. Kim MJ, Kim HI, Chung J, Jeong TS, Park HR (2009) (–)-Epigallocatechin-3-gallate (EGCG) increases the viability of serum-starved A549 cells through its effect on Akt. Am J Chin Med 37:723–734

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a Grant-in-Aid from Department of Science and Technology (SERB) of India (SB/FT/LS-204/2012) to T. K. B. K. is the recipient of senior research fellowship (09/1012 (0005) 2K11—EMR—I) from the Council of Scientific and Industrial Research (CSIR), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thandavarayan Kathiresan.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthikeyan, B., Harini, L., Krishnakumar, V. et al. Insights on the involvement of (–)-epigallocatechin gallate in ER stress-mediated apoptosis in age-related macular degeneration. Apoptosis 22, 72–85 (2017). https://doi.org/10.1007/s10495-016-1318-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1318-2

Keywords

Navigation