Skip to main content
Log in

A novel 4,6-disubstituted-1,2,4-triazolo-1,3,4-thiadiazole derivative inhibits tumor cell invasion and potentiates the apoptotic effect of TNFα by abrogating NF-κB activation cascade

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Condensed-bicyclic 4,6-substituted1,2,4-triazolo-1,3,4-thiadiazole derivatives (CBTT) have been shown to possess a wide spectrum of pharmacological activities. In this study, several novel CBTT derivatives were synthesized and investigated for their possible role as anti-neoplastic agents. The anti-proliferative effect of various CBTT derivatives was analyzed against tumor cell lines by (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) MTT assay. One of the potential CBTT derivative, 5-(3-(2,3-dichlorophenyl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-6-yl)flurobenzonitrile (DTTF) was found to be the most potent against cervical cancer SiHa cells and exhibited minimal effect against normal cells. Molecular docking analysis indicated that transcription factor NF-κB was one of the potential molecular targets modulated by DTTF. Specifically, the drug blocked the TNFα-induced phosphorylation of upstream IκBα kinase in a time-dependent manner leading to the suppression of NF-κB activation and nuclear translocation. DTTF also potentiated the apoptotic effect of TNFα, as well as significantly inhibited migration and invasion of tumor cells. Overall, these findings indicate a potential novel role and mechanism(s) of action of DTTF as an anticancer agent against diverse malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CBTT:

Condensed-bicyclic 4,6-substituted 1,2,4-triazolo-1,3,4-thiadiazole derivatives

DTTF:

5-(3-(2,3-Dichlorophenyl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-6-yl)flurobenzonitrile

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

TNFα:

Tumor necrosis factor alpha

HPV:

Human papillomavirus

IKK:

IκB kinase

ChIP:

Chromatin immunoprecipitation.

References

  1. Ferlay J, Soerjomataram I, Dikshit R et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386

    Article  CAS  PubMed  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  3. Bruni L B-RL, Albero G, Aldea M et al (2015) ICO Information Centre on HPV and Cancer (HPV Information Centre). Human Papillomavirus and Related Diseases in the World [Online].

  4. Hariri S, Dunne E, Saraiya M, Unger E, Markowitz L (2011) Chap. 5: human papillomavirus (HPV). In: Manual for the surveillance of vaccine-preventable diseases, 5th edn. Centers for Disease Control and Prevention, Atlanta

  5. Doll R, Payne P, Waterhouse JAH. (1966) Cancer incidence in five continents. Union Internationale Contre le Cancer, Geneva, pp 1

    Book  Google Scholar 

  6. Sankaranarayanan R, Swaminathan R, Brenner H et al (2010) Cancer survival in Africa, Asia, and Central America: a population-based study. Lancet Oncol 11:165–173

    Article  PubMed  Google Scholar 

  7. Hofstetter AM, Rosenthal SL (2014) Factors impacting HPV vaccination: lessons for health care professionals. Expert Rev Vaccines 13:1013–1026

    Article  CAS  PubMed  Google Scholar 

  8. Herrero R, Gonzalez P, Markowitz LE (2015) Present status of human papillomavirus vaccine development and implementation. Lancet Oncol 16:e206–e216

    Article  CAS  PubMed  Google Scholar 

  9. Cheng D, Guo Z, Zhang S. (2015) Effect of beta-sitosterol on the expression of HPV E6 and p53 in cervical carcinoma cells. Contemp Oncol (Pozn) 19:36–42

    CAS  Google Scholar 

  10. Hietanen S, Lain S, Krausz E, Blattner C, Lane DP (2000) Activation of p53 in cervical carcinoma cells by small molecules. Proc Natl Acad Sci USA 97:8501–8506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Koivusalo R, Mialon A, Pitkanen H, Westermarck J, Hietanen S (2006) Activation of p53 in cervical cancer cells by human papillomavirus E6 RNA interference is transient, but can be sustained by inhibiting endogenous nuclear export-dependent p53 antagonists. Cancer Res 66:11817–11824

    Article  CAS  PubMed  Google Scholar 

  12. Dymalla S, Scheffner M, Weber E et al (2009) A novel peptide motif binding to and blocking the intracellular activity of the human papillomavirus E6 oncoprotein. J Mol Med (Berl) 87:321–331

    Article  CAS  Google Scholar 

  13. Butz K, Denk C, Ullmann A, Scheffner M, Hoppe-Seyler F (2000) Induction of apoptosis in human papillomaviruspositive cancer cells by peptide aptamers targeting the viral E6 oncoprotein. Proc Natl Acad Sci USA 97:6693–6697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barbie TU, Barbie DA, MacLaughlin DT, Maheswaran S, Donahoe PK (2003) Mullerian Inhibiting Substance inhibits cervical cancer cell growth via a pathway involving p130 and p107. Proc Natl Acad Sci USA 100:15601–15606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fantini MC, Pallone F (2008) Cytokines: from gut inflammation to colorectal cancer. Curr Drug Targets 9:375–380

    Article  CAS  PubMed  Google Scholar 

  16. Chai EZ, Siveen KS, Shanmugam MK, Arfuso F, Sethi G (2015) Analysis of the intricate relationship between chronic inflammation and cancer. Biochem J 468:1–15

    Article  CAS  PubMed  Google Scholar 

  17. Li F, Zhang J, Arfuso F et al (2015) NF-kappaB in cancer therapy. Arch Toxicol 89:711–731

    Article  CAS  PubMed  Google Scholar 

  18. Sethi G, Tergaonkar V (2009) Potential pharmacological control of the NF-kappaB pathway. Trends Pharmacol Sci 30:313–321

    Article  CAS  PubMed  Google Scholar 

  19. Li F, Sethi G (2010) Targeting transcription factor NF-kappaB to overcome chemoresistance and radioresistance in cancer therapy. Biochim Biophys Acta 1805:167–180

    CAS  PubMed  Google Scholar 

  20. Kim HJ, Hawke N, Baldwin AS (2006) NF-kappaB and IKK as therapeutic targets in cancer. Cell Death Differ 13:738–747

    Article  CAS  PubMed  Google Scholar 

  21. Shin EM, Hay HS, Lee MH et al (2014) DEAD-box helicase DP103 defines metastatic potential of human breast cancers. J Clin Invest 124:3807–3824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kamata H, Manabe T, Oka S, Kamata K, Hirata H (2002) Hydrogen peroxide activates IkappaB kinases through phosphorylation of serine residues in the activation loops. FEBS Lett 519:231–237

    Article  CAS  PubMed  Google Scholar 

  23. Sethi G, Sung B, Aggarwal BB (2008) TNF: a master switch for inflammation to cancer. Front Biosci 13:5094–5107

    Article  CAS  PubMed  Google Scholar 

  24. Ahn KS, Sethi G, Aggarwal BB (2007) Nuclear factor-kappa B: from clone to clinic. Curr Mol Med 7:619–637

    Article  CAS  PubMed  Google Scholar 

  25. Shen HM, Tergaonkar V (2009) NFkappaB signaling in carcinogenesis and as a potential molecular target for cancer therapy. Apoptosis 14:348–363

    Article  CAS  PubMed  Google Scholar 

  26. Dey A, Tergaonkar V, Lane DP (2008) Double-edged swords as cancer therapeutics: simultaneously targeting p53 and NF-kappaB pathways. Nat Rev Drug Discov 7:1031–1040

    Article  CAS  PubMed  Google Scholar 

  27. Tergaonkar V (2006) NFkappaB pathway: a good signaling paradigm and therapeutic target. Int J Biochem Cell Biol 38:1647–1653

    Article  CAS  PubMed  Google Scholar 

  28. Chew J, Biswas S, Shreeram S et al (2009) WIP1 phosphatase is a negative regulator of NF-kappaB signalling. Nat Cell Biol 11:659–666

    Article  CAS  PubMed  Google Scholar 

  29. Amir M, Kumar H, Javed SA (2008) Condensed bridgehead nitrogen heterocyclic system: synthesis and pharmacological activities of 1,2,4-triazolo-[3,4-b]–1,3,4-thiadiazole derivatives of ibuprofen and biphenyl-4-yloxy acetic acid. Eur J Med Chem 43:2056–2066

    Article  CAS  PubMed  Google Scholar 

  30. Papakonstantinou-Garoufalia SS, Tani E, Todoulou O et al (1998) Synthesis and pharmacochemical investigation of some novel 1, 2, 4–4H-triazoles with potential antiviral activity. J Pharm Pharmacol 50:117–124

    Article  CAS  PubMed  Google Scholar 

  31. Hui XP, Chu CH, Zi-Yi Z, Wang Q, Zhang Q (2002) Synthesis and antibacterial activities of 1,3,4-oxadiazole derivatives containing 5-methylisoxazole moiety. Indian J Chem 41B:2176–2179

    CAS  Google Scholar 

  32. Holla BS, Poojary KN, Rao BS, Shivananda MK (2002) New bis-aminomercaptotriazoles and bis-triazolothiadiazoles as possible anticancer agents. Eur J Med Chem 37:511–517

    Article  PubMed  Google Scholar 

  33. Swamy SN, Basappa, Priya BS et al (2006) Synthesis of pharmaceutically important condensed heterocyclic 4,6-disubstituted-1,2,4-triazolo-1,3,4-thiadiazole derivatives as antimicrobials. Eur J Med Chem 41:531–538

    Article  CAS  PubMed  Google Scholar 

  34. Chaturvedi B, Tiwari N, Nizamuddin (1988) A convenient and novel synthesis of 1,2,4-triazolo[3,4-B][1,3,4]-thiadiazoles as potential pesticides. Agr Biol Chem Tokyo 52:1229–1232

    CAS  Google Scholar 

  35. Prasad AR, Ramalingam T, Rao AB, Diwan PV, Sattur PB (1986) Synthesis and biological activity of 2-(aryloxyalkyl)5-(3,4-methylenedioxyphenyl)-s-triazolo [3,4-b]–1,3,4-thiadiazoles. Indian J Chem 25B:566–568

    CAS  Google Scholar 

  36. Vaarla K, Vedula RR (2015) Synthesis of 6-(5-methylisoxazol-3yl)-3-alkyl sulfanyl-[1,2,4]triazolo-[3,4-b][1,3,4]thiadiazoles. J Heterocycl Chem 52:1614–1617

    Article  CAS  Google Scholar 

  37. Subrahmanyam EVS, Revanasiddappa BC, Ishwar Bhat K, Jisha Prems., Surya PS (2010) Synthesis and biological evaluation of some new 1,2,4-triazolo-[3,4,-b]–1,3,4-thiadiazoles. J Chem Pharm Res 2:323–326

    CAS  Google Scholar 

  38. Zhang Z, Chen X. (1991) Studies on condensed heterocyclic compounds I: synthesis and antibacterial activity of 3-(4′-pyridyl)-6-aryl-s-triazolo[3,4-b]–1,3,4-thiadiazoles. Acta Chim Sinica 49:513–520

    CAS  Google Scholar 

  39. Kamotra P, Gupta Avinash K, Rajive G (2007) Microwave-assisted synthesis of substituted-4-oxo-4H-1-benzopyran- 3-carboxaldehydes using vilsmeier reagent over silica gel. Indian J Chem 46B:980–984

    CAS  Google Scholar 

  40. Chen X, Liu C, Wang J, Li Y (2010) Synthesis of some novel 3-alkyl/aryl-6-((1H-benzo[d][1,2,3]triazol-1-yl)methyl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazoles. J Heterocycl Chem 47:1225–1229

    Article  CAS  Google Scholar 

  41. Kumar CA, Swamy SN, Gaonkar SL, Basappa, Salimath BP, Rangappa KS (2007) N-substituted-2-butyl-5-chloro-3H-imidazole-4-carbaldehyde derivatives as anti-tumor agents against Ehrlich ascites tumor cells in vivo. Med Chem 3:269–276

    Article  CAS  PubMed  Google Scholar 

  42. Gaonkar Santosh L, Mahendra M, Nanjunda Swamy S, Shetty Nitinkumar S. (2012) Synthesis and crystal structure studies of diethyl-(6-chloro-2-carbazolyl) methyl malonate an intermediate in the synthesis of anti-inflammatory drug Carprofen. Res J Pharmaceutical Sci 1:16–22

    Google Scholar 

  43. Nanjunda-Swamy S, Sarala G, Prabhuswamy B, Anandalwar S, Shashidhara-Prasad J, Rangappa KS (2005) Synthesis and X-ray crystal studies of 6-(2-chlorophenyl)-3-methyl [1, 2, 4] triazolo [4, 5-b][1, 3, 4] thiadiazole. J Chem Res 2005:238–239

    Article  Google Scholar 

  44. Ningegowda R, Grover A, Basappa et al (2010) Synthesis, characterization and in vitro anti-tumor activities of novel 9-ethyl-9H-purine derivatives. Invest New Drugs 28:754–765

    Article  CAS  PubMed  Google Scholar 

  45. Ningegowda R, Kavitha C, Priya B et al (2009) Microwave-assisted solvent-free synthesis of N-alkyl benzotriazole derivatives: antimicrobial studies. Lett Drug Design Discov 6:502–507

    Article  CAS  Google Scholar 

  46. Priya BS, Anil Kumar C, Nanjunda Swamy S et al (2007) 2-(2-(2-Ethoxybenzoylamino)-4-chlorophenoxy)-N-(2-ethoxybenzoyl)benzamine inhibits EAT cell induced angiogenesis by down regulation of VEGF secretion. Bioorg Med Chem Lett 17:2775–2780

    Article  CAS  PubMed  Google Scholar 

  47. Priya BS, Swamy SN, Tejesvi MV et al (2006) Synthesis, characterization, antimicrobial and single crystal X-ray crystallographic studies of some new sulfonyl, 4-chloro phenoxy benzene and dibenzoazepine substituted benzamides. Eur J Med Chem 41:1262–1270

    Article  CAS  PubMed  Google Scholar 

  48. Sunitha K, Hemshekhar M, Gaonkar SL et al (2011) Neutralization of haemorrhagic activity of viper venoms by 1-(3-dimethylaminopropyl)-1-(4-fluorophenyl)-3-oxo-1,3-dihydroisobenzofuran-5-car bonitrile. Basic Clin Pharmacol Toxicol 109:292–299

    Article  CAS  PubMed  Google Scholar 

  49. Swamy SN, Kavitha C, Priya B, Gaonkar S, Tejesvi M, Rangappa K (2009) Microwave-assisted synthesis of N-alkylated bibenzoimidazolyl derivatives: antimicrobial studies. Lett Drug Design Discov 6:380–386

    Article  CAS  Google Scholar 

  50. Swamy SN, Naveen S, Prabhuswamy B, Sridhar M, Prasad JS, Rangappa KS (2006b) Synthesis and crystal structure analysis of 2-(4-methyl-2′-biphenyl)-4-amino-1, 2, 4-triazole-3-thiol. Struct Chem 17:91–95

    Article  CAS  Google Scholar 

  51. George, T, Tahilram R, Dabholka DA (1969) Synthesis of condensed s-triazole heterocycles. Indian J Chem 7:959

  52. Shanmugam MK, Rajendran P, Li F et al (2011) Ursolic acid inhibits multiple cell survival pathways leading to suppression of growth of prostate cancer xenograft in nude mice. J Mol Med (Berl) 89:713–727

    Article  CAS  Google Scholar 

  53. Manu KA, Shanmugam MK, Ramachandran L et al (2012) First evidence that gamma-tocotrienol inhibits the growth of human gastric cancer and chemosensitizes it to capecitabine in a xenograft mouse model through the modulation of NF-kappaB pathway. Clin Cancer Res 18:2220–2229

    Article  CAS  PubMed  Google Scholar 

  54. Shanmugam MK, Manu KA, Ong TH et al (2011) Inhibition of CXCR4/CXCL12 signaling axis by ursolic acid leads to suppression of metastasis in transgenic adenocarcinoma of mouse prostate model. Int J Cancer 129:1552–1563

    Article  CAS  PubMed  Google Scholar 

  55. Chua AW, Hay HS, Rajendran P et al (2010) Butein downregulates chemokine receptor CXCR4 expression and function through suppression of NF-kappaB activation in breast and pancreatic tumor cells. Biochem Pharmacol 80:1553–1562

    Article  CAS  PubMed  Google Scholar 

  56. Ahn KS, Sethi G, Aggarwal BB (2007) Simvastatin potentiates TNF-alpha-induced apoptosis through the down-regulation of NF-kappaB-dependent antiapoptotic gene products: role of IkappaBalpha kinase and TGF-beta-activated kinase-1. J Immunol 178:2507–2516

    Article  CAS  PubMed  Google Scholar 

  57. Yared G, Hussain KB, Nathani MG et al (1998) Cytokine-mediated apoptosis and inhibition of virus production and anchorage independent growth of viral transfected hepatoblastoma cells. Cytokine 10:586–595

    Article  CAS  PubMed  Google Scholar 

  58. Sethi G, Sung B, Kunnumakkara AB, Aggarwal BB (2009) Targeting TNF for treatment of cancer and autoimmunity. Adv Exp Med Biol 647:37–51

    Article  CAS  PubMed  Google Scholar 

  59. Keerthy HK, Mohan CD, Sivaraman Siveen K et al (2014) Novel synthetic biscoumarins target tumor necrosis factor-alpha in hepatocellular carcinoma in vitro and in vivo. J Biol Chem 289:31879–31890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Garcia-Pineres AJ, Castro V, Mora G et al (2001) Cysteine 38 in p65/NF-kappaB plays a crucial role in DNA binding inhibition by sesquiterpene lactones. J Biol Chem 276:39713–39720

    Article  CAS  PubMed  Google Scholar 

  61. Sethi G, Ahn KS, Sandur SK, Lin X, Chaturvedi MM, Aggarwal BB (2006) Indirubin enhances tumor necrosis factor-induced apoptosis through modulation of nuclear factor-kappa B signaling pathway. J Biol Chem 281:23425–23435

    Article  CAS  PubMed  Google Scholar 

  62. Mayhoub AS, Marler L, Kondratyuk TP, Park EJ, Pezzuto JM, Cushman M (2012) Optimizing thiadiazole analogues of resveratrol versus three chemopreventive targets. Bioorg Med Chem 20:510–520

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported to BSP through financial assistance from SERB, New Delhi [Start -Up- Research Grant (Young Scientists)—Life Sciences] No: SB/FT/LS-297/2012 and University Grants Commission, New Delhi, Government of India under UGC-MRP vide No. F. No: 41/224/2012 (SR). SNS thanks VTU, Belagavi (VTU Research Grants Vide No: VTU/Aca/2011-12/A-9/739) and SERB, New Delhi [Start -Up- Research Grant (Young Scientists)—Life Sciences] No: SB/FT/LS-297/2012 for financial assistance. This work was supported by NUHS Basic seed Grant (T1-BSRG 2015-02) and Ministry of Education Tier I grant to G. Sethi. G. Sethi was also supported by the John Nott Cancer Fellowship from Cancer Council, Western Australia. The authors would also like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of this research through the Research Group Number (RG-1435-081).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gautam Sethi or Babu Shubha Priya.

Additional information

Raghu Ningegowda and Nanjunda Swamy Shivananju have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6240 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ningegowda, R., Shivananju, N.S., Rajendran, P. et al. A novel 4,6-disubstituted-1,2,4-triazolo-1,3,4-thiadiazole derivative inhibits tumor cell invasion and potentiates the apoptotic effect of TNFα by abrogating NF-κB activation cascade. Apoptosis 22, 145–157 (2017). https://doi.org/10.1007/s10495-016-1312-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1312-8

Keywords

Navigation