Skip to main content

Advertisement

Log in

Amelotin gene expression is temporarily being upregulated at the initiation of apoptosis induced by TGFβ1 in mouse gingival epithelial cells

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Amelotin (AMTN) is expressed and secreted by ameloblasts in the maturation stage of amelogenesis and persist with low levels in the junctional epithelium (JE) of erupted teeth. The purpose of this study is to investigate the transcriptional regulation of the AMTN gene by transforming growth factor beta1 (TGFβ1) in gingival epithelial (GE1) cells in the apoptosis phase. Apoptosis was evaluated by the fragmentation of chromosomal DNA and TUNEL staining. A real-time PCR was carried out to examine the AMTN mRNA levels induced by TGFβ1 and Smad3 overexpression. Transient transfection analyses were completed using the various lengths of mouse AMTN gene promoter constructs with or without TGFβ1. Chromatin immunoprecipitation (ChIP) assays were performed to investigate the Smad3 bindings to the AMTN gene promoter by TGFβ1. TGFβ1-induced apoptosis in GE1 cells were detected at 24 and 48 h by DNA fragmentation and TUNEL staining. AMTN mRNA levels increased at 6 h and reached maximum at 24 h in GE1 cells. Luciferase activities of the mouse AMTN gene promoter constructs were induced by TGFβ1. The results of the ChIP assays showed that there was an increase in Smad3 binding to Smad-binding element (SBE)#1 and SBE#2 after stimulation by TGFβ1. Immunohistochemical localization of AMTN was detected in the JE, and the AMTN protein levels in Smad3-deficient mice were decreased compared with wild-type mice. AMTN mRNA levels were induced at the initiation of apoptosis by TGFβ1, which mediated through the Smad3 bindings to SBEs in the mouse AMTN gene promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schroeder HE, Listgarten MA (1997) The gingival tissues: the architecture of periodontal protection. Periodontol 2000 13:91–120

    Article  CAS  PubMed  Google Scholar 

  2. Bosshardt DD, Lang NP (2005) The junctional epithelium: from health to disease. J Dent Res 84:9–20

    Article  CAS  PubMed  Google Scholar 

  3. Kinumatsu T, Hashimoto S, Muramatsu T et al (2009) Involvement of laminin and integrins in adhesion and migration of junctional epithelium cells. J Periodontal Res 44:13–20

    Article  CAS  PubMed  Google Scholar 

  4. Miyata K, Takebe J (2013) Anodized-hydrothermally treated titanium with a nanotopographic surface structure regulates integrin-α6β4 and laminin-5 gene expression in adherent murine gingival epithelial cells. J Prosthodont Res 57:99–108

    Article  PubMed  Google Scholar 

  5. Iwasaki K, Bajenova E, Somogyi-Ganss E et al (2005) Amelotin—a novel secreted, ameloblast-specific protein. J Dent Res 84:1127–1132

    Article  CAS  PubMed  Google Scholar 

  6. Somogyi-Ganss E, Nakayama Y, Iwasaki K et al (2012) Comparative temporospatial expression profiling of murine amelotin protein during amelogenesis. Cells Tissues Organs 195:535–549

    Article  CAS  PubMed  Google Scholar 

  7. Lacruz RS, Nakayama Y, Holcroft J et al (2012) Targeted overexpression of amelotin disrupts the microstructure of dental enamel. PLoS ONE 7:e35200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nakayama Y, Holcroft J, Ganss B (2015) Enamel hypomineralization and structural defects in amelotin-deficient mice. J Dent Res 94:697–705

    Article  CAS  PubMed  Google Scholar 

  9. Abbarin N, San Miguel S, Holcroft J et al (2015) The enamel protein amelotin is a promoter of hydroxyapatite mineralization. J Bone Miner Res 30:775–785

    Article  CAS  PubMed  Google Scholar 

  10. Gasse B, Silvent J, Sire JY (2012) Evolutionary analysis suggests that AMTN is enamel-specific and a candidate for AI. J Dent Res 91:1085–1089

    Article  CAS  PubMed  Google Scholar 

  11. Moffatt P, Smith CE, St-Arnaud R et al (2006) Cloning of rat amelotin and localization of the protein to the basal lamina of maturation stage ameloblasts and junctional epithelium. Biochem J 399:37–46

    Article  CAS  PubMed  Google Scholar 

  12. Nishio C, Wazen R, Moffatt P et al (2013) Expression of odontogenic ameloblast-associated and amelotin proteins in the junctional epithelium. Periodontol 63:59–66

    Article  Google Scholar 

  13. Sawada T, Yamazaki T, Shibayama K et al (2014) Expression and localization of laminin 5, laminin 10, type IV collagen, and amelotin in adult murine gingiva. J Mol Histol 45:293–302

    Article  CAS  PubMed  Google Scholar 

  14. Oshiro A, Iseki S, Miyauchi M et al (2012) Lipopolysaccharide induces rapid loss of follicular dendritic cell-secreted protein in the junctional epithelium. J Periodontal Res 47:689–694

    Article  CAS  PubMed  Google Scholar 

  15. Holcroft J, Ganss B (2011) Identification of amelotin- and ODAM-interacting enamel matrix proteins using the yeast two-hybrid system. Eur J Oral Sci 119(Suppl 1):301–306

    Article  PubMed  Google Scholar 

  16. Nakayama Y, Takai H, Matsui S et al (2014) Proinflammatory cytokines induce amelotin transcription in human gingival fibroblasts. J Oral Sci 56:261–268

    Article  Google Scholar 

  17. Nakayama Y, Takai H, Matsui S et al (2014) Transcriptional regulation of amelotin gene by proinflammatory cytokines in gingival fibroblasts. Connect Tissue Res 55(Suppl 1):18–20

    Article  CAS  Google Scholar 

  18. Lee HK, Ji S, Park SJ et al (2015) Odontogenic ameloblast-associated protein (ODAM) mediates junctional epithelium attachment to teeth via integrin-ODAM-Rho guanine nucleotide exchange factor 5 (ARHGEF5)-RhoA signaling. J Biol Chem 290:14740–14753

    Article  CAS  PubMed Central  Google Scholar 

  19. Nishio C, Wazen R, Kuroda S, Moffatt P, Nanci A (2010) Disruption of periodontal integrity induces expression of apin by epithelial cell rests of Malassez. J Periodontal Res 45:709–713

    Article  CAS  Google Scholar 

  20. Wazen RM, Moffatt P, Ponce KJ et al (2015) Inactivation of the Odontogenic ameloblast-associated gene affects the integrity of the junctional epithelium and gingival healing. Eur Cell Mater 30:187–199

    CAS  Google Scholar 

  21. Jue SS, Kim JY, Na SH et al (2014) Localization of ODAM, PCNA, and CK14 in regenerating junctional epithelium during orthodontic tooth movement in rats. Angle Orthod 84:534–540

    Article  Google Scholar 

  22. Sawada T (2015) Ultrastructural and immunocytochemical characterization of ameloblast-enamel adhesion at maturation stage in amelogenesis in Macaca fuscata tooth germ. Histochem Cell Biol 144:587–596

    Article  CAS  Google Scholar 

  23. Kebschull M, Demmer RT, Grün B et al (2014) Gingival tissue transcriptomes identify distinct periodontitis phenotypes. J Dent Res 93:459–468

    Article  CAS  PubMed Central  Google Scholar 

  24. Duarte PM, Bastos MF, Fermiano D et al (2015) Do subjects with aggressive and chronic periodontitis exhibit a different cytokine/chemokine profile in the gingival crevicular fluid? A systematic review. J Periodontal Res 50:18–27

    Article  CAS  Google Scholar 

  25. Kebschull M, Guarnieri P, Demmer RT et al (2013) Molecular differences between chronic and aggressive periodontitis. J Dent Res 92:1081–1088

    Article  CAS  PubMed Central  Google Scholar 

  26. Yoshimoto T, Fujita T, Ouhara K et al (2014) Smad2 is involved in aggregatibacter actinomycetemcomitans-induced apoptosis. J Dent Res 93:1148–1154

    Article  CAS  PubMed Central  Google Scholar 

  27. Fujita T, Alotaibi M, Kitase Y et al (2012) Smad2 is involved in the apoptosis of murine gingival junctional epithelium associated with inhibition of Bcl-2. Arch Oral Biol 57:1567–1573

    Article  CAS  Google Scholar 

  28. Lu H, Mackenzie IC, Levine AE (1997) Transforming growth factor-beta response and expression in junctional and oral gingival epithelial cells. J Periodontal Res 32:682–691

    Article  CAS  Google Scholar 

  29. Yoshimoto T, Fujita T, Kajiya M et al (2015) Involvement of smad2 and Erk/Akt cascade in TGF-β1-induced apoptosis in human gingival epithelial cells. Cytokine 75:165–173

    Article  CAS  Google Scholar 

  30. Hatakeyama S, Ohara-Nemoto Y, Yanai N et al (2001) Establishment of gingival epithelial cell lines from transgenic mice harboring temperature sensitive simian virus 40 large T-antigen gene. J Oral Pathol Med 30:296–304

    Article  CAS  Google Scholar 

  31. Llobet-Navas D, Rodriguez-Barrueco R, de la Iglesia-Vicente J et al (2014) The microRNA 424/503 cluster reduces CDC25A expression during cell cycle arrest imposed by transforming growth factor β in mammary epithelial cells. Mol Cell Biol 34:4216–4231

    Article  PubMed Central  Google Scholar 

  32. Genrich G, Kruppa M, Lenk L et al (2016) The anti-oxidative transcription factor NUCLEAR factor E2 related factor-2 (Nrf2) counteracts TGF-β1 mediated growth inhibition of pancreatic ductal epithelial cells -Nrf2 as determinant of pro-tumorigenic functions of TGF-β1. BMC Cancer 16:155

    Article  PubMed Central  Google Scholar 

  33. Tan R, He W, Lin X, Kiss LP, Liu Y (2008) Smad ubiquitination regulatory factor-2 in the fibrotic kidney: regulation, target specificity, and functional implication. Am J Physiol Renal Physiol 294:F1076–F1083

    Article  CAS  PubMed Central  Google Scholar 

  34. Tran CM, Smith HE, Symes A, Rittié L, Perbal B, Shapiro IM, Risbud MV (2011) Transforming growth factor β controls CCN3 expression in nucleus pulposus cells of the intervertebral disc. Arthritis Rheum 63:3022–3031

    Article  CAS  PubMed Central  Google Scholar 

  35. Jinno K, Takahashi T, Tsuchida K et al (2009) Acceleration of palatal wound healing in Smad3-deficient mice. J Dent Res 88:757–761

    Article  CAS  Google Scholar 

  36. Lee J, Kim MR, Kim HJ, An YS, Yi JY (2016) TGF-β1 accelerates the DNA damage response in epithelial cells via Smad signaling. Biochem Biophys Res Commun 476:420–425

    Article  CAS  Google Scholar 

  37. Shi Y, Wang YF, Jayaraman L et al (1998) Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-beta signaling. Cell 94:585–594

    Article  CAS  Google Scholar 

  38. Chai J, Wu JW, Yan N et al (2003) Features of a Smad3 MH1-DNA complex. Roles of water and zinc in DNA binding. J Biol Chem 278:20327–20331

    Article  CAS  Google Scholar 

  39. Heldin CH, Landström M, Moustakas A (2009) Mechanism of TGF-beta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition. Curr Opin Cell Biol 21:166–176

    Article  CAS  Google Scholar 

  40. Moustakas A, Heldin CH (2005) Non-Smad TGF-beta signals. J Cell Sci 118(Pt 16):3573–3584

    Article  CAS  Google Scholar 

  41. Nakata A, Kameda T, Nagai H, Ikegami K, Duan Y, Terada K, Sugiyama T (2003) Establishment and characterization of a spontaneously immortalized mouse ameloblast-lineage cell line. Biochem Biophys Res Commun 308:834–839

    Article  CAS  Google Scholar 

  42. Shi Y, Massagué J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685–700

    Article  CAS  Google Scholar 

  43. Lim JY, Oh MA, Kim WH et al (2012) AMP-activated protein kinase inhibits TGF-β-induced fibrogenic responses of hepatic stellate cells by targeting transcriptional coactivator p300. J Cell Physiol 227:1081–1089

    Article  CAS  Google Scholar 

  44. Feng XH, Liang YY, Liang M et al (2002) Direct interaction of c-Myc with Smad2 and Smad3 to inhibit TGF-beta-mediated induction of the CDK inhibitor p15(Ink4B). Mol Cell 9:133–143

    Article  CAS  Google Scholar 

  45. Zhang Y, Feng XH, Derynck R (1998) Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-beta-induced transcription. Nature 394:909–913

    Article  CAS  Google Scholar 

  46. Tomikawa K, Yamamoto T, Shiomi N et al (2012) Smad2 decelerates re-epithelialization during gingival wound healing. J Dent Res 91:764–770

    Article  CAS  Google Scholar 

  47. Yokozeki M, Afanador E, Nishi M et al (2003) Smad3 is required for enamel biomineralization. Biochem Biophys Res Commun 305:684–690

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Grant-in-Aid for Scientific Research (Young Scientists (B); No. 25862059, Scientific Research (C); No. 25463229), Nihon University Multidisciplinary Research Grant for 2014, Nihon University School of Dentistry at Matsudo Young Investigator Seed Funding Grant for 2014, and a Grant of Strategic Research Base Development Program for Private Universities from the Ministry of Education, Culture, Sports, Science, and Technology, Japan (MEXT), 2010-2014 (S1001024), and an Operating Grant MOP-79449 (BG) from the Canadian Institutes of Health Research (CIHR).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yohei Nakayama or Yorimasa Ogata.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakayama, Y., Matsui, S., Noda, K. et al. Amelotin gene expression is temporarily being upregulated at the initiation of apoptosis induced by TGFβ1 in mouse gingival epithelial cells. Apoptosis 21, 1057–1070 (2016). https://doi.org/10.1007/s10495-016-1279-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1279-5

Keywords

Navigation