Skip to main content

Advertisement

Log in

Current situation and future usage of anticancer drug databases

  • Review
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Cancer is a deadly disease with increasing incidence and mortality rates and affects the life quality of millions of people per year. The past 15 years have witnessed the rapid development of targeted therapy for cancer treatment, with numerous anticancer drugs, drug targets and related gene mutations been identified. The demand for better anticancer drugs and the advances in database technologies have propelled the development of databases related to anticancer drugs. These databases provide systematic collections of integrative information either directly on anticancer drugs or on a specific type of anticancer drugs with their own emphases on different aspects, such as drug–target interactions, the relationship between mutations in drug targets and drug resistance/sensitivity, drug–drug interactions, natural products with anticancer activity, anticancer peptides, synthetic lethality pairs and histone deacetylase inhibitors. We focus on a holistic view of the current situation and future usage of databases related to anticancer drugs and further discuss their strengths and weaknesses, in the hope of facilitating the discovery of new anticancer drugs with better clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65(1):5–29

    Article  PubMed  Google Scholar 

  2. Li T, Ziniel PD, He PQ, Kommer VP, Crowther GJ, He M et al (2015) High-throughput screening against thioredoxin glutathione reductase identifies novel inhibitors with potential therapeutic value for schistosomiasis. Infect Dis Poverty 4:40

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shoemaker RH (2006) The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 6(10):813–823

    Article  CAS  PubMed  Google Scholar 

  4. Tomczak K, Czerwinska P, Wiznerowicz M (2015) The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn) 19(1A):A68–A77

    Google Scholar 

  5. Gohlke BO, Nickel J, Otto R, Dunkel M, Preissner R (2016) CancerResource-updated database of cancer-relevant proteins, mutations and interacting drugs. Nucleic Acids Res 44(D1):D932–D937

    Article  PubMed  Google Scholar 

  6. Marusyk A, Polyak K (2010) Tumor heterogeneity: causes and consequences. Biochim Biophys Acta 1805(1):105–117

    CAS  PubMed  Google Scholar 

  7. Cebrian V, Fierro M, Orenes-Pinero E, Grau L, Moya P, Ecke T et al (2011) KISS1 methylation and expression as tumor stratification biomarkers and clinical outcome prognosticators for bladder cancer patients. Am J Pathol 179(2):540–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tym JE, Mitsopoulos C, Coker EA, Razaz P, Schierz AC, Antolin AA et al (2016) canSAR: an updated cancer research and drug discovery knowledgebase. Nucleic Acids Res 44(D1):D938–D943

    Article  PubMed  Google Scholar 

  9. Huang H, Wu X, Pandey R, Li J, Zhao G, Ibrahim S et al (2012) C(2)Maps: a network pharmacology database with comprehensive disease–gene–drug connectivity relationships. BMC Genomics 13(Suppl 6):S17

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gautam A, Chaudhary K, Kumar R, Gupta S, Singh H, Raghava GP (2016) Managing drug resistance in cancer: role of cancer informatics. Methods Mol Biol 1395:299–312

    Article  PubMed  Google Scholar 

  11. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S et al (2013) Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res 41(Database issue):D955–D961

    Article  CAS  PubMed  Google Scholar 

  12. Taccioli C, Sorrentino G, Zannini A, Caroli J, Beneventano D, Anderlucci L et al (2015) MDP, a database linking drug response data to genomic information, identifies dasatinib and statins as a combinatorial strategy to inhibit YAP/TAZ in cancer cells. Oncotarget 6(36):38854–38865

    PubMed  PubMed Central  Google Scholar 

  13. Dienstmann R, Jang IS, Bot B, Friend S, Guinney J (2015) Database of genomic biomarkers for cancer drugs and clinical targetability in solid tumors. Cancer Discov 5(2):118–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Basu A, Bodycombe NE, Cheah JH, Price EV, Liu K, Schaefer GI et al (2013) An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell 154(5):1151–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mashima T, Ushijima M, Matsuura M, Tsukahara S, Kunimasa K, Furuno A et al (2015) Comprehensive transcriptomic analysis of molecularly targeted drugs in cancer for target pathway evaluation. Cancer Sci 106(7):909–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ushijima M, Mashima T, Tomida A, Dan S, Saito S, Furuno A et al (2013) Development of a gene expression database and related analysis programs for evaluation of anticancer compounds. Cancer Sci 104(3):360–368

    Article  CAS  PubMed  Google Scholar 

  17. Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N et al (2014) Drug resistance in cancer: an overview. Cancers 6(3):1769–1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, Dastur A, Lau KW et al (2012) Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483(7391):570–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S et al (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483(7391):603–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yap KY, Chan A, Chui WK, Chen YZ (2010) Cancer informatics for the clinician: an interaction database for chemotherapy regimens and antiepileptic drugs. Seizure 19(1):59–67

    Article  PubMed  Google Scholar 

  21. Mangal M, Sagar P, Singh H, Raghava GP, Agarwal SM (2013) NPACT: naturally occurring plant-based anti-cancer compound-activity-target database. Nucleic Acids Res 41(Database issue):D1124–D1129

    Article  CAS  PubMed  Google Scholar 

  22. Tao W, Li B, Gao S, Bai Y, Shar PA, Zhang W et al (2015) CancerHSP: anticancer herbs database of systems pharmacology. Sci Rep 5:11481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Murugan K, Shanmugasamy S, Al-Sohaibani S, Vignesh N, Palanikannan K, Vimala A et al (2015) TaxKB: a knowledge base for new taxane-related drug discovery. BioData Min 8:19

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lin YC, Wang CC, Chen IS, Jheng JL, Li JH, Tung CW (2013) TIPdb: a database of anticancer, antiplatelet, and antituberculosis phytochemicals from indigenous plants in Taiwan. Sci World J 2013:736386

    Google Scholar 

  25. Tung CW, Lin YC, Chang HS, Wang CC, Chen IS, Jheng JL et al (2014) TIPdb-3D: the three-dimensional structure database of phytochemicals from Taiwan indigenous plants. Database (Oxford). doi:10.1093/database/bau055

    Google Scholar 

  26. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13(10):714–726

    Article  CAS  PubMed  Google Scholar 

  27. Tyagi A, Tuknait A, Anand P, Gupta S, Sharma M, Mathur D et al (2015) CancerPPD: a database of anticancer peptides and proteins. Nucleic Acids Res 43(Database issue):D837–D843

    Article  PubMed  Google Scholar 

  28. Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M (2010) Synthetic therapeutic peptides: science and market. Drug Discov Today 15(1–2):40–56

    Article  CAS  PubMed  Google Scholar 

  29. Otvos L Jr (2008) Peptide-based drug design: here and now. Methods Mol Biol 494:1–8

    Article  CAS  PubMed  Google Scholar 

  30. Thundimadathil J (2012) Cancer treatment using peptides: current therapies and future prospects. J Amino Acids 2012:967347

    Article  PubMed  PubMed Central  Google Scholar 

  31. Boone C, Bussey H, Andrews BJ (2007) Exploring genetic interactions and networks with yeast. Nat Rev Genet 8(6):437–449

    Article  CAS  PubMed  Google Scholar 

  32. Guo J, Liu H, Zheng J (2016) SynLethDB: synthetic lethality database toward discovery of selective and sensitive anticancer drug targets. Nucleic Acids Res 44(D1):D1011–D1017

    Article  PubMed  Google Scholar 

  33. Kaelin WG Jr (2009) Synthetic lethality: a framework for the development of wiser cancer therapeutics. Genome Med 1(10):99

    Article  PubMed  PubMed Central  Google Scholar 

  34. Iglehart JD, Silver DP (2009) Synthetic lethality—a new direction in cancer-drug development. N Engl J Med 361(2):189–191

    Article  CAS  PubMed  Google Scholar 

  35. Murugan K, Sangeetha S, Ranjitha S, Vimala A, Al-Sohaibani S, Rameshkumar G (2015) HDACiDB: a database for histone deacetylase inhibitors. Drug Des Dev Ther 9:2257–2264

    Article  Google Scholar 

  36. Mitsuyama S, Shimizu N (2012) CancerProView: a graphical image database of cancer-related genes and proteins. Genomics 100(2):81–92

    Article  CAS  PubMed  Google Scholar 

  37. Singh Nanda J, Kumar R, Raghava GP (2016) dbEM: a database of epigenetic modifiers curated from cancerous and normal genomes. Sci Rep 6:19340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Davies M, Nowotka M, Papadatos G, Dedman N, Gaulton A, Atkinson F et al (2015) ChEMBL web services: streamlining access to drug discovery data and utilities. Nucleic Acids Res 43(W1):W612–W620

    Article  PubMed  PubMed Central  Google Scholar 

  39. Thorn CF, Klein TE, Altman RB (2013) PharmGKB: the Pharmacogenomics Knowledge Base. Methods Mol Biol 1015:311–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y et al (2014) DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 42(Database issue):D1091–D1097

    Article  CAS  PubMed  Google Scholar 

  41. Gilson MK, Liu T, Baitaluk M, Nicola G, Hwang L, Chong J (2016) BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res 44(D1):D1045–D1053

    Article  PubMed  Google Scholar 

  42. Yang H, Qin C, Li YH, Tao L, Zhou J, Yu CY et al (2016) Therapeutic target database update 2016: enriched resource for bench to clinical drug target and targeted pathway information. Nucleic Acids Res 44(D1):D1069–D1074

    Article  PubMed  Google Scholar 

  43. Li Q, Xiang JF, Yang QF, Sun HX, Guan AJ, Tang YL (2013) G4LDB: a database for discovering and studying G-quadruplex ligands. Nucleic Acids Res 41(Database issue):D1115–D1123

    Article  CAS  PubMed  Google Scholar 

  44. Sledge GW Jr (2005) What is targeted therapy? J Clin Oncol 23(8):1614–1615

    Article  PubMed  Google Scholar 

  45. Shih YC, Smieliauskas F, Geynisman DM, Kelly RJ, Smith TJ (2015) Trends in the cost and use of targeted cancer therapies for the privately insured nonelderly: 2001 to 2011. J Clin Oncol 33(19):2190–2196

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from China Postdoctoral Science Foundation (2015M580794).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongzhi Wang or Leilei Fu.

Ethics declarations

Conflict of interest

We declare that none of the authors has a financial interest related to this work.

Additional information

Hongzhi Wang, Yuanyuan Yin and Peiqi Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Yin, Y., Wang, P. et al. Current situation and future usage of anticancer drug databases. Apoptosis 21, 778–794 (2016). https://doi.org/10.1007/s10495-016-1250-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1250-5

Keywords

Navigation