Skip to main content

Advertisement

Log in

Cytotoxic activity of the novel heterocyclic compound G-11 is primarily mediated through intrinsic apoptotic pathway

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Natural and chemically synthesized heterocyclic compounds have been explored for their potential use as anticancer agents. We had synthesized non-natural heterocyclic analogs and evaluated their anti-tumor activity by measuring effect on cell proliferation and induction of apoptosis in different cell lines. Previously, we identified a pyrazole-containing compound (G-11) showing cytotoxic effect towards leukemia and lymphoma cell lines. In this study, we further investigated the mechanistic aspects of anticancer properties of G-11 in HL-60 cell line. We demonstrated that cytotoxic effect of G-11 is mediated by caspase-dependent apoptosis. However, the involvement of mitochondrial dysfunction induced by G-11 was independent of caspases. G-11 triggered generation of ROS, caused disruption of mitochondrial transmembrane potential, increased release of cytochrome c to the cytosol, and altered the expression of Bcl-2 and Bax proteins. These results suggest significant involvement of intrinsic apoptotic pathway. This study comprehensively details the possible mechanisms of action of a novel heterocyclic compound which could find its potential use as an anticancer agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

G-11:

[1-(2′′,3′′,4′′,6′′-Tetra-O-acetyl-β-D-glucopyranosyl)-4-(3′-trifluoromethylphenyl hydrazono)-3-trifluoromethyl-1,4-dihydropyrazol-5-one]

HL-60:

Human acute myelogenous leukemia cell line

∆ψm :

Difference in mitochondrial transmembrane potential

ROS:

Reactive oxygen species

VDAC:

Voltage dependent anion channel

Bcl-2:

B-cell lymphoma 2

Bcl-xL:

B-cell lymphoma-extra-large

Bax:

Bcl-2-associated X protein

Bak:

Bcl-2 homologous antagonist killer

PARP:

Poly (ADP-ribose) polymerase

7-AAD:

7-amino-actinomycin D

PDTC:

Pyrrolidine dithiocarbamate

NAC:

N-Acetyl cysteine

z-VAD-FMK:

N-Benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone

Necrostatin-1:

[5-(1H-Indol-3-ylmethyl)-3-methyl-2-thioxo-4-Imidazolidinone, 5-(Indol-3-ylmethyl)-3-methyl-2-thio-Hydantoin, MTH-DL-Tryptophan]

DMSO:

Dimethyl sulfoxide

PMSF:

Phenylmethanesulfonyl fluoride

Ac-LEHD-pNA:

N-acetyl-Leu-Glu-His-Asp-p-nitroanilide

Ac-IETD-pNA:

N-acetyl-Ile-Glu-Thr-Asp-p-nitroanilide

Ac-DEVD-pNA:

N-acetyl-Asp-Glu-Val-Asp-p-nitroanilide

PVDF:

Polyvinylidene fluoride

References

  1. Ali I, Lone MN, Al-Othman ZA, Al-Warthan A, Sanagi MM (2015) Heterocyclic scaffolds: centrality in anticancer drug development. Curr Drug Targets 16:711–734

    Article  CAS  PubMed  Google Scholar 

  2. Martins P, Jesus J, Santos S, Raposo LR, Roma-Rodrigues C, Baptista PV et al (2015) Heterocyclic anticancer compounds: recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules 20:16852–16891

    Article  CAS  PubMed  Google Scholar 

  3. Bryson HM, Sorkin EM (1993) Cladribine. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in haematological malignancies. Drugs 46:872–894

    Article  CAS  PubMed  Google Scholar 

  4. Robertson LE, Huh YO, Butler JJ, Pugh WC, Hirsch-Ginsberg C, Stass S et al (1992) Response assessment in chronic lymphocytic leukemia after fludarabine plus prednisone: clinical, pathologic, immunophenotypic, and molecular analysis. Blood 80:29–36

    CAS  PubMed  Google Scholar 

  5. Ross SR, McTavish D, Faulds D (1993) Fludarabine. A review of its pharmacological properties and therapeutic potential in malignancy. Drugs 45:737–759

    Article  CAS  PubMed  Google Scholar 

  6. Leoni LM, Chao Q, Cottam HB, Genini D, Rosenbach M, Carrera CJ et al (1998) Induction of an apoptotic program in cell-free extracts by 2-chloro-2′-deoxyadenosine 5′-triphosphate and cytochrome c. Proc Natl Acad Sci USA 95:9567–9571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ewald B, Sampath D, Plunkett W (2008) Nucleoside analogs: molecular mechanisms signaling cell death. Oncogene 27:6522–6537

    Article  CAS  PubMed  Google Scholar 

  8. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391:43–50

    Article  CAS  PubMed  Google Scholar 

  9. Mukae N, Enari M, Sakahira H, Fukuda Y, Inazawa J, Toh H et al (1998) Molecular cloning and characterization of human caspase-activated DNase. Proc Natl Acad Sci USA 95:9123–9128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Samejima K, Tone S, Kottke TJ, Enari M, Sakahira H, Cooke CA et al (1998) Transition from caspase-dependent to caspase-independent mechanisms at the onset of apoptotic execution. J Cell Biol 143:225–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marchetti P, Castedo M, Susin SA, Zamzami N, Hirsch T, Macho A et al (1996) Mitochondrial permeability transition is a central coordinating event of apoptosis. J Exp Med 184:1155–1160

    Article  CAS  PubMed  Google Scholar 

  12. Tan TT, Degenhardt K, Nelson DA, Beaudoin B, Nieves-Neira W, Bouillet P et al (2005) Key roles of BIM-driven apoptosis in epithelial tumors and rational chemotherapy. Cancer Cell 7:227–238

    Article  CAS  PubMed  Google Scholar 

  13. Abdou IM, Saleh AM, Zohdi HF (2004) Synthesis and antitumor activity of 5-trifluoromethyl-2,4- dihydropyrazol-3-one nucleosides. Molecules 9:109–116

    Article  CAS  PubMed  Google Scholar 

  14. Ikezoe T, Yang J, Nishioka C, Tasaka T, Taniguchi A, Kuwayama Y et al (2007) A novel treatment strategy targeting Aurora kinases in acute myelogenous leukemia. Mol Cancer Ther 6:1851–1857

    Article  CAS  PubMed  Google Scholar 

  15. Keen N, Taylor S (2009) Mitotic drivers—inhibitors of the Aurora B kinase. Cancer Metastasis Rev 28:185–195

    Article  CAS  PubMed  Google Scholar 

  16. Yang J, Ikezoe T, Nishioka C, Tasaka T, Taniguchi A, Kuwayama Y et al (2007) AZD1152, a novel and selective aurora B kinase inhibitor, induces growth arrest, apoptosis, and sensitization for tubulin depolymerizing agent or topoisomerase II inhibitor in human acute leukemia cells in vitro and in vivo. Blood 110:2034–2040

    Article  CAS  PubMed  Google Scholar 

  17. Perchellet EM, Ward MM, Skaltsounis AL, Kostakis IK, Pouli N, Marakos P et al (2006) Antiproliferative and proapoptotic activities of pyranoxanthenones, pyranothioxanthenones and their pyrazole-fused derivatives in HL-60 cells. Anticancer Res 26:2791–2804

    CAS  PubMed  Google Scholar 

  18. Judson IR (1991) Anthrapyrazoles: true successors to the anthracyclines? Anticancer Drugs 2:223–232

    Article  CAS  PubMed  Google Scholar 

  19. Saleh AM, Taha MO, Aziz MA, Al-Qudah MA, AbuTayeh RF, Rizvi SA (2016) Novel anticancer compound [trifluoromethyl-substituted pyrazole N-nucleoside] inhibits FLT3 activity to induce differentiation in acute myeloid leukemia cells. Cancer Lett 375:199–208

    Article  CAS  PubMed  Google Scholar 

  20. Abad MJ, Bedoya LM, Apaza L, Bermejo P (2012) The artemisia L. genus: a review of bioactive essential oils. Molecules 17:2542–2566

    Article  CAS  PubMed  Google Scholar 

  21. Saleh AM, Aljada A, El-Abadelah MM, Sabri SS, Zahra JA, Nasr A et al (2015) The pyridone-annelated isoindigo (5′-Cl) induces apoptosis, dysregulation of mitochondria and formation of ROS in leukemic HL-60 cells. Cell Physiol Biochem 35:1958–1974

    Article  CAS  PubMed  Google Scholar 

  22. Gong J, Traganos F, Darzynkiewicz Z (1994) A selective procedure for DNA extraction from apoptotic cells applicable for gel electrophoresis and flow cytometry. Anal Biochem 218:314–319

    Article  CAS  PubMed  Google Scholar 

  23. Masoud L, Vijayasarathy C, Fernandez-Cabezudo M, Petroianu G, Saleh AM (2003) Effect of malathion on apoptosis of murine L929 fibroblasts: a possible mechanism for toxicity in low dose exposure. Toxicology 185:89–102

    Article  CAS  PubMed  Google Scholar 

  24. Saleh AM, El-Abadelah MM, Aziz MA, Taha MO, Nasr A, Rizvi SA (2015) Antiproliferative activity of the isoindigo 5′-Br in HL-60 cells is mediated by apoptosis, dysregulation of mitochondrial functions and arresting cell cycle at G0/G1 phase. Cancer Lett 361:251–261

    Article  CAS  PubMed  Google Scholar 

  25. Cossu A, Posadino AM, Giordo R, Emanueli C, Sanguinetti AM, Piscopo A et al (2012) Apricot melanoidins prevent oxidative endothelial cell death by counteracting mitochondrial oxidation and membrane depolarization. PLoS One 7:e48817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Salvioli S, Ardizzoni A, Franceschi C, Cossarizza A (1997) JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess delta psi changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett 411:77–82

    Article  CAS  PubMed  Google Scholar 

  27. She MR, Li JG, Guo KY, Lin W, Du X, Niu XQ (2007) Requirement of reactive oxygen species generation in apoptosis of leukemia cells induced by 2-methoxyestradiol. Acta Pharmacol Sin 28:1037–1044

    Article  CAS  PubMed  Google Scholar 

  28. Saleh AM, Vijayasarathy C, Masoud L, Kumar L, Shahin A, Kambal A (2003) Paraoxon induces apoptosis in EL4 cells via activation of mitochondrial pathways. Toxicol Appl Pharmacol 190:47–57

    Article  CAS  PubMed  Google Scholar 

  29. Adams JM, Cory S (2002) Apoptosomes: engines for caspase activation. Curr Opin Cell Biol 14:715–720

    Article  CAS  PubMed  Google Scholar 

  30. Groninger E, Meeuwsen-De Boer GJ, De Graaf SS, Kamps WA, De Bont ES (2002) Vincristine induced apoptosis in acute lymphoblastic leukaemia cells: a mitochondrial controlled pathway regulated by reactive oxygen species? Int J Oncol 21:1339–1345

    CAS  PubMed  Google Scholar 

  31. Keter FK, Darkwa J (2012) Perspective: the potential of pyrazole-based compounds in medicine. Biometals 25:9–21

    Article  CAS  PubMed  Google Scholar 

  32. Kuwana T, Newmeyer DD (2003) Bcl-2-family proteins and the role of mitochondria in apoptosis. Curr Opin Cell Biol 15:691–699

    Article  CAS  PubMed  Google Scholar 

  33. Wang XD, Gu LQ, Wu JY (2007) Apoptosis-inducing activity of new pyrazole emodin derivatives in human hepatocellular carcinoma HepG2 cells. Biol Pharm Bull 30:1113–1116

    Article  CAS  PubMed  Google Scholar 

  34. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J et al (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129–1132

    Article  CAS  PubMed  Google Scholar 

  35. Sampath D, Rao VA, Plunkett W (2003) Mechanisms of apoptosis induction by nucleoside analogs. Oncogene 22:9063–9074

    Article  CAS  PubMed  Google Scholar 

  36. Saleh A, Srinivasula SM, Acharya S, Fishel R, Alnemri ES (1999) Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J Biol Chem 274:17941–17945

    Article  CAS  PubMed  Google Scholar 

  37. Luchi K, Hatano Y, Yagura T (2008) Heterocyclic organobismuth(III) induces apoptosis of human promyelocytic leukemic cells through activation of caspases and mitochondrial perturbation. Biochem Pharmacol 76:974–986

    Article  Google Scholar 

  38. Huang H, Shah K, Bradbury NA, Li C, White C (2014) Mcl-1 promotes lung cancer cell migration by directly interacting with VDAC to increase mitochondrial Ca2+ uptake and reactive oxygen species generation. Cell Death Dis 5:e1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bebbington D, Binch H, Charrier JD, Everitt S, Fraysse D, Golec J et al (2009) The discovery of the potent aurora inhibitor MK-0457 (VX-680). Bioorg Med Chem Lett 19:3586–3592

    Article  CAS  PubMed  Google Scholar 

  40. Reddy GL, Guru SK, Srinivas M, Pathania AS, Mahajan P, Nargotra A et al (2014) Synthesis of 5-substituted-1H-pyrazolo[4,3-d]pyrimidin-7(6H)-one analogs and their biological evaluation as anticancer agents: mTOR inhibitors. Eur J Med Chem 80:201–208

    Article  CAS  PubMed  Google Scholar 

  41. Gamal-Eldeen AM, Hamdy NA, Abdel-Aziz HA, El-Hussieny EA, Fakhr IM (2014) Induction of intrinsic apoptosis pathway in colon cancer HCT-116 cells by novel 2-substituted-5, 6, 7, 8-tetrahydronaphthalene derivatives. Eur J Med Chem 77:323–333

    Article  CAS  PubMed  Google Scholar 

  42. Shin SY, Yoon H, Hwang D, Ahn S, Kim D-W, Koh D et al (2013) Benzochalcones bearing pyrazoline moieties show anti-colorectal cancer activities and selective inhibitory effects on aurora kinases. Bioorg Med Chem 21:7018–7024

    Article  CAS  PubMed  Google Scholar 

  43. Ge D, Kong X, Liu W, Zhao J, Su L, Zhang S et al (2013) Phosphorylation and nuclear translocation of integrin β4 induced by a chemical small molecule contribute to apoptosis in vascular endothelial cells. Apoptosis 18:1120–1131

    Article  CAS  PubMed  Google Scholar 

  44. Liu X, Wilcken R, Joerger AC, Chuckowree IS, Amin J, Spencer J et al (2013) Small molecule induced reactivation of mutant p53 in cancer cells. Nucleic Acids Res 41:6034–6044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Toton E, Ignatowicz E, Bernard MK, Kujawski J, Rybczynska M (2013) Evaluation of apoptotic activity of new condensed pyrazole derivatives. J Physiol Pharmacol 64:115–123

    CAS  PubMed  Google Scholar 

  46. Huang YT, Pan SL, Guh JH, Chang YL, Lee FY, Kuo SC et al (2005) YC-1 suppresses constitutive nuclear factor-kappaB activation and induces apoptosis in human prostate cancer cells. Mol Cancer Ther 4:1628–1635

    Article  CAS  PubMed  Google Scholar 

  47. Ding XL, Zhang HY, Qi L, Zhao BX, Lian S, Lv HS et al (2009) Synthesis of novel pyrazole carboxamide derivatives and discovery of modulators for apoptosis or autophagy in A549 lung cancer cells. Bioorg Med Chem Lett 19:5325–5328

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project is supported by a research Grant from King Abdulaziz City for Science and Technology (KACST; Grant Number- AT-34-136, Riyadh, Kingdom of Saudi Arabia) for Saleh A.M. Publication cost is supported by King Abdullah International Medical Research Center (KAIMRC) in Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman M. Saleh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 415 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleh, A.M., Aziz, M.A., Abdou, I.M. et al. Cytotoxic activity of the novel heterocyclic compound G-11 is primarily mediated through intrinsic apoptotic pathway. Apoptosis 21, 873–886 (2016). https://doi.org/10.1007/s10495-016-1248-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1248-z

Keywords

Navigation