, Volume 21, Issue 2, pp 121–129 | Cite as

Necroptosis: a potential, promising target and switch in acute pancreatitis

  • Gang Wang
  • Feng-Zhi Qu
  • Le Li
  • Jia-Chen Lv
  • Bei Sun


Pancreatic acinar cell death is the major pathophysiological change in early acute pancreatitis (AP), and the death modalities are important factors determining its progression and prognosis. During AP, acinar cells undergo two major modes of death, including necrosis and apoptosis. Acinar necrosis can lead to intensely local and systemic inflammatory responses, which both induce and aggravate the lesion. Necrosis has long been considered an unregulated, and passive cell death process. Since the effective interventions of necrosis are difficult to perform, its relevant studies have not received adequate attention. Necroptosis is a newly discovered cell death modality characterized by both necrosis and apoptosis, i.e., it is actively regulated by special genes, while has the typical morphological features of necrosis. Currently, necroptosis is gradually becoming an important topic in the fields of inflammatory diseases. The preliminary results from necroptosis in AP have confirmed the existence of acinar cell necroptosis, which may be a potential target for effectively regulating inflammatory injuries and improving its outcomes; however, the functional changes and mechanisms of necroptosis still require further investigation. This article reviewed the progress of necroptosis in AP to provide a reference for deeply understanding the pathogenic mechanisms of AP and identifying new therapeutic targets.


Acute pancreatitis Necroptosis Endoplasmic reticulum stress Damage-associated molecular patterns Inflammasome 



This paper was supported by grants from the National Nature Scientific Foundation of China (Nos. 81100314, 81170431, 81370565, 81372613), the New Century Support Foundation for Elitist of Heilongjiang Province in China (No. 1253-NCET-017) and Wei-Han Yu Scientific Foundation of Harbin Medical University in China.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Wang G, Lv JC, Wu LF, Li L, Dong DL, Sun B (2014) From nitric oxide to hyperbaric oxygen: invisible and subtle but nonnegligible gaseous signaling molecules in acute pancreatitis. Pancreas 43:511–517PubMedCrossRefGoogle Scholar
  2. 2.
    Wang G, Sun B, Zhu H, Gao Y, Li X, Xue D et al (2010) Protective effects of emodin combined with danshensu on experimental severe acute pancreatitis. Inflamm Res 59:479–488PubMedCrossRefGoogle Scholar
  3. 3.
    Wang G, Sun B, Gao Y, Meng QH, Jiang HC (2008) An experimental study of emodin assisted early enteral nutrition for the treatment of severe acute pancreatitis. Hepatogastroenterology 55:33–40PubMedGoogle Scholar
  4. 4.
    Wang G, Sun B, Gao Y, Meng QH, Jiang HC (2007) The effect of emodin assisted early enteral nutrition on severe acute pancreatoitis and secondary hepatic injury. Mediat Inflamm 2007:29638Google Scholar
  5. 5.
    Kang R, Lotze MT, Zeh HJ, Billiar TR, Tang D (2014) Cell death and DAMPs in acute pancreatitis. Mol Med 20:466–477PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Wang G, Han B, Zhou H, Wu L, Wang Y, Jia G et al (2013) Inhibition of hydrogen sulfide synthesis provides protection for severe acute pancreatitis rats via apoptosis pathway. Apoptosis 18:28–42PubMedCrossRefGoogle Scholar
  7. 7.
    Dannappel M, Vlantis K, Kumari S, Polykratis A, Kim C, Wachsmuth L et al (2014) RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature 513:90–94PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Newton K, Hildebrand JM, Shen Z, Rodriguez D, Alvarez-Diaz S, Petersen S et al (2014) Is SIRT2 required for necroptosis? Nature 506:E4–E6PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Pasparakis M, Vandenabeele P (2015) Necroptosis and its role in inflammation. Nature 517:311–320PubMedCrossRefGoogle Scholar
  10. 10.
    Li S, Zhang L, Yao Q, Li L, Dong N, Rong J et al (2013) Pathogen blocks host death receptor signalling by arginine GlcNAcylation of death domains. Nature 501:242–246PubMedCrossRefGoogle Scholar
  11. 11.
    Takahashi N, Vereecke L, Bertrand MJ, Duprez L, Berger SB, Divert T et al (2014) RIPK1 ensures intestinal homeostasis by protecting the epithelium against apoptosis. Nature 513:95–99PubMedCrossRefGoogle Scholar
  12. 12.
    Newton K, Dugger DL, Wickliffe KE, Kapoor N, de Almagro MC, Vucic D et al (2014) Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science 343:1357–1360PubMedCrossRefGoogle Scholar
  13. 13.
    Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC et al (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325:332–336PubMedCrossRefGoogle Scholar
  14. 14.
    Rickard JA, O’Donnell JA, Evans JM, Lalaoui N, Poh AR, Rogers T et al (2014) RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis. Cell 157:1175–1188PubMedCrossRefGoogle Scholar
  15. 15.
    Zhou W, Yuan J (2014) SnapShot: necroptosis. Cell 158:464–464e1PubMedCrossRefGoogle Scholar
  16. 16.
    Wang Z, Jiang H, Chen S, Du F, Wang X (2012) The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148:228–243PubMedCrossRefGoogle Scholar
  17. 17.
    Dillon CP, Weinlich R, Rodriquez DA, Cripps JG, Quarato G, Gurung P et al (2014) RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell 157:1189–1202PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Linkermann A, Green DR (2014) Necroptosis. N Engl J Med 370:455–465PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Kaczmarek A, Vandenabeele P, Krysko DV (2013) Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38:209–223PubMedCrossRefGoogle Scholar
  20. 20.
    Duprez L, Takahashi N, Van Hauwermeiren F, Vandendriessche B, Goossens V, Vanden Berghe T et al (2011) RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity 35:908–918PubMedCrossRefGoogle Scholar
  21. 21.
    Moriwaki K, Balaji S, McQuade T, Malhotra N, Kang J, Chan FK (2014) The necroptosis adaptor RIPK3 promotes injury-induced cytokine expression and tissue repair. Immunity 41:567–578PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Bleriot C, Dupuis T, Jouvion G, Eberl G, Disson O, Lecuit M (2015) Liver-resident macrophage necroptosis orchestrates type 1 microbicidal inflammation and type-2-mediated tissue repair during bacterial infection. Immunity 42:145–158PubMedCrossRefGoogle Scholar
  23. 23.
    Bhatia M, Wong FL, Cao Y, Lau HY, Huang J, Puneet P et al (2005) Pathophysiology of acute pancreatitis. Pancreatology 5:132–144PubMedCrossRefGoogle Scholar
  24. 24.
    Gukovskaya AS, Mareninova OA, Odinokova IV, Sung KF, Lugea A, Fischer L et al (2006) Cell death in pancreatitis: effects of alcohol. J Gastroenterol Hepatol 21:S10–S13PubMedCrossRefGoogle Scholar
  25. 25.
    Kaiser AM, Saluja AK, Lu L, Yamanaka K, Yamaguchi Y, Steer ML (1996) Effects of cycloheximide on pancreatic endonuclease activity, apoptosis, and severity of acute pancreatitis. Am J Physiol 271:C982–C993PubMedGoogle Scholar
  26. 26.
    Chan FK, Shisler J, Bixby JG, Felices M, Zheng L, Appel M et al (2003) A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses. J Biol Chem 278:51613–51621PubMedCrossRefGoogle Scholar
  27. 27.
    Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S et al (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1:489–495PubMedCrossRefGoogle Scholar
  28. 28.
    Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N et al (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119PubMedCrossRefGoogle Scholar
  29. 29.
    Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 15:135–147PubMedCrossRefGoogle Scholar
  30. 30.
    Feoktistova M, Leverkus M (2015) Programmed necrosis and necroptosis signaling. FEBS J 282:19–31PubMedCrossRefGoogle Scholar
  31. 31.
    Xie T, Peng W, Yan C, Wu J, Gong X, Shi Y (2013) Structural insights into RIP3-mediated necroptotic signaling. Cell Rep 5:70–78PubMedCrossRefGoogle Scholar
  32. 32.
    Galluzzi L, Kepp O, Kroemer G (2014) MLKL regulates necrotic plasma membrane permeabilization. Cell Res 24:139–140PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Jacob TG, Sreekumar VI, Roy TS, Garg PK (2014) Electron-microscopic evidence of mitochondriae containing macroautophagy in experimental acute pancreatitis: implications for cell death. Pancreatology 14:454–458PubMedCrossRefGoogle Scholar
  34. 34.
    Hall JC, Crawford HC (2014) The conspiracy of autophagy, stress and inflammation in acute pancreatitis. Curr Opin Gastroenterol 30:495–499PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Sah RP, Saluja A (2011) Molecular mechanisms of pancreatic injury. Curr Opin Gastroenterol 27:444–451PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Mashima H, Ohnishi H (2014) The mechanism of the onset of acute pancreatitis. Nihon Shokakibyo Gakkai Zasshi 111:1550–1560PubMedGoogle Scholar
  37. 37.
    Wu L, Cai B, Liu X, Cai H (2014) Emodin attenuates calcium overload and endoplasmic reticulum stress in AR42 J rat pancreatic acinar cells. Mol Med Rep 9:267–272PubMedGoogle Scholar
  38. 38.
    Wu L, Cai B, Zheng S, Liu X, Cai H, Li H (2013) Effect of emodin on endoplasmic reticulum stress in rats with severe acute pancreatitis. Inflammation 36:1020–1029PubMedCrossRefGoogle Scholar
  39. 39.
    Sah RP, Garg P, Saluja AK (2012) Pathogenic mechanisms of acute pancreatitis. Curr Opin Gastroenterol 28:507–515PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Zeng Y, Wang X, Zhang W, Wu K, Ma J (2012) Hypertriglyceridemia aggravates ER stress and pathogenesis of acute pancreatitis. Hepatogastroenterology 59:2318–2326PubMedGoogle Scholar
  41. 41.
    Seyhun E, Malo A, Schäfer C, Moskaluk CA, Hoffmann RT, Göke B et al (2011) Tauroursodeoxycholic acid reduces endoplasmic reticulum stress, acinar cell damage, and systemic inflammation in acute pancreatitis. Am J Physiol Gastrointest Liver Physiol 301:G773–G782PubMedCrossRefGoogle Scholar
  42. 42.
    Pandol SJ, Gorelick FS, Gerloff A, Lugea A (2010) Alcohol abuse, endoplasmic reticulum stress and pancreatitis. Dig Dis 28:776–782PubMedCrossRefGoogle Scholar
  43. 43.
    Saveljeva S, Mc Laughlin SL, Vandenabeele P, Samali A, Bertrand MJ (2015) Endoplasmic reticulum stress induces ligand-independent TNFR1-mediated necroptosis in L929 cells. Cell Death Dis 6:e1587PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Rizzi F, Naponelli V, Silva A, Modernelli A, Ramazzina I, Bonacini M et al (2014) Polyphenon E(R), a standardized green tea extract, induces endoplasmic reticulum stress, leading to death of immortalized PNT1a cells by anoikis and tumorigenic PC3 by necroptosis. Carcinogenesis 35:828–839PubMedCrossRefGoogle Scholar
  45. 45.
    Wu J, Huang Z, Ren J, Zhang Z, He P, Li Y et al (2013) Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis. Cell Res 23:994–1006PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Lin Z, Guo J, Xue P, Huang L, Deng L, Yang X et al (2014) Chaiqinchengqi decoction regulates necrosis-apoptosis via regulating the release of mitochondrial cytochrome c and caspase-3 in rats with acute necrotizing pancreatitis. J Tradit Chin Med 34:178–183PubMedCrossRefGoogle Scholar
  47. 47.
    Huang W, Booth DM, Cane MC, Chvanov M, Javed MA, Elliott VL et al (2014) Fatty acid ethyl ester synthase inhibition ameliorates ethanol-induced Ca2+-dependent mitochondrial dysfunction and acute pancreatitis. Gut 63:1313–1324PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Lerch MM, Halangk W, Mayerle J (2013) Preventing pancreatitis by protecting the mitochondrial permeability transition pore. Gastroenterology 144:265–269PubMedCrossRefGoogle Scholar
  49. 49.
    Maléth J, Rakonczay Z Jr, Venglovecz V, Dolman NJ, Hegyi P (2013) Central role of mitochondrial injury in the pathogenesis of acute pancreatitis. Acta Physiol (Oxf) 207:226–235CrossRefGoogle Scholar
  50. 50.
    Marshall KD, Baines CP (2014) Necroptosis: is there a role for mitochondria? Front Physiol 5:323PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Bae JH, Shim JH, Cho YS (2014) Chemical regulation of signaling pathways to programmed necrosis. Arch Pharm Res 37:689–697PubMedCrossRefGoogle Scholar
  52. 52.
    Fulda S (2013) The mechanism of necroptosis in normal and cancer cells. Cancer Biol Ther 14:999–1004PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Kim JE, Ryu HJ, Kim MJ, Kang TC (2014) LIM kinase-2 induces programmed necrotic neuronal death via dysfunction of DRP1-mediated mitochondrial fission. Cell Death Differ 21:1036–1049PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Murphy JM, Czabotar PE, Hildebrand JM, Lucet IS, Zhang JG, Alvarez-Diaz S et al (2013) The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39:443–453PubMedCrossRefGoogle Scholar
  55. 55.
    Remijsen Q, Goossens V, Grootjans S, Van den Haute C, Vanlangenakker N, Dondelinger Y et al (2014) Depletion of RIPK3 or MLKL blocks TNF- driven necroptosis and switches towards a delayed RIPK1 kinase-dependent apoptosis. Cell Death Dis 5:e1004PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Moujalled DM, Cook WD, Murphy JM, Vaux DL (2014) Necroptosis induced by RIPK3 requires MLKL but not Drp1. Cell Death Dis 5:e1086PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Schroder K, Tschopp J (2010) The inflammasomes. Cell 140:821–832PubMedCrossRefGoogle Scholar
  58. 58.
    Yuk JM, Jo EK (2013) Crosstalk between autophagy and inflammasomes. Mol Cells 36:393–399PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J et al (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479:117–121PubMedCrossRefGoogle Scholar
  60. 60.
    Lukens JR, Vogel P, Johnson GR, Kelliher MA, Iwakura Y, Lamkanfi M et al (2013) RIP1-driven autoinflammation targets IL-1α independently of inflammasomes and RIP3. Nature 498:224–227PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Strowig T, Henao-Mejia J, Elinav E, Flavell R (2012) Inflammasomes in health and disease. Nature 481:278–286PubMedCrossRefGoogle Scholar
  62. 62.
    Hoque R, Sohail M, Malik A, Sarwar S, Luo Y, Shah A et al (2011) TLR9 and the NLRP3 inflammasome link acinar cell death with inflammation in acute pancreatitis. Gastroenterology 141:358–369PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Ren JD, Ma J, Hou J, Xiao WJ, Jin WH, Wu J et al (2014) Hydrogen-rich saline inhibits NLRP3 inflammasome activation and attenuates experimental acute pancreatitis in mice. Mediat Inflamm 2014:930894Google Scholar
  64. 64.
    Galluzzi L, Kepp O, Krautwald S, Kroemer G, Linkermann A (2014) Molecular mechanisms of regulated necrosis. Semin Cell Dev Biol 35:24–32PubMedCrossRefGoogle Scholar
  65. 65.
    Fayaz SM, Suvanish Kumar VS, Rajanikant GK (2014) Necroptosis: who knew there were so many interesting ways to die? CNS Neurol Disord: Drug Targets 13:42–51CrossRefGoogle Scholar
  66. 66.
    Chan FK, Luz NF, Moriwaki K (2015) Programmed necrosis in the cross talk of cell death and inflammation. Annu Rev Immunol 33:79–106PubMedCrossRefGoogle Scholar
  67. 67.
    He S, Wang L, Miao L, Wang T, Du F, Zhao L et al (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137:1100–1111PubMedCrossRefGoogle Scholar
  68. 68.
    Kearney CJ, Cullen SP, Tynan GA, Henry CM, Clancy D, Lavelle EC et al (2015) Necroptosis suppresses inflammation via termination of TNF-or LPS-induced cytokine and chemokine production. Cell Death Differ 22:1313–1327PubMedCrossRefGoogle Scholar
  69. 69.
    Linkermann A, Bräsen JH, De Zen F, Weinlich R, Schwendener RA, Green DR et al (2012) Dichotomy between RIP1- and RIP3-mediated necroptosis in tumor necrosis factor-α-induced shock. Mol Med 18:577–586PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Wu W, Liu P, Li J (2012) Necroptosis: an emerging form of programmed cell death. Crit Rev Oncol Hematol 82:249–258PubMedCrossRefGoogle Scholar
  71. 71.
    Ma X, Conklin DJ, Li F, Dai Z, Hua X, Li Y et al (2015) The oncogenic microRNA miR-21 promotes regulated necrosis in mice. Nat Commun 6:7151PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Fulda S (2013) Alternative cell death pathways and cell metabolism. Int J Cell Biol 2013:463637PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Vanden Berghe T, Vanlangenakker N, Parthoens E, Deckers W, Devos M, Festjens N et al (2010) Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ 17:922–930PubMedCrossRefGoogle Scholar
  74. 74.
    Iida A, Yoshidome H, Shida T, Kimura F, Shimizu H, Ohtsuka M et al (2009) Does prolonged biliary obstructive jaundice sensitize the liver to endotoxemia? Shock 31:397–403PubMedCrossRefGoogle Scholar
  75. 75.
    Odinokova IV, Sung KF, Mareninova OA, Hermann K, Gukovsky I, Gukovskaya AS (2008) Mitochondrial mechanisms of death responses in pancreatitis. J Gastroenterol Hepatol 23:S25–S30PubMedCrossRefGoogle Scholar
  76. 76.
    Feissner RF, Skalska J, Gaum WE, Sheu SS (2009) Crosstalk signaling between mitochondrial Ca2+ and ROS. Front Biosci 14:1197–1218CrossRefGoogle Scholar
  77. 77.
    Voronina SG, Barrow SL, Simpson AW, Gerasimenko OV, da Silva Xavier G, Rutter GA et al (2010) Dynamic changes in cytosolic and mitochondrial ATP levels in pancreatic acinar cells. Gastroenterology 138:1976–1987PubMedCrossRefGoogle Scholar
  78. 78.
    Marx J, Pretorius E, Bester MJ (2006) Effects of Urginea sanguinea, a traditional asthma remedy, on embryo neuronal development. J Ethnopharmacol 104:315–321PubMedCrossRefGoogle Scholar
  79. 79.
    Criddle DN, Gerasimenko JV, Baumgartner HK, Jaffar M, Voronina S, Sutton R et al (2007) Calcium signalling and pancreatic cell death: apoptosis or necrosis? Cell Death Differ 14:1285–1294PubMedCrossRefGoogle Scholar
  80. 80.
    Kang R, Zhang Q, Hou W, Yan Z, Chen R, Bonaroti J et al (2014) Intracellular hmgb1 inhibits inflammatory nucleosome release and limits acute pancreatitis in mice. Gastroenterology 146:1097–1107PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Gukovskaya AS, Gukovsky I (2012) Autophagy and pancreatitis. Am J Physiol Gastrointest Liver Physiol 303:G993–G1003PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Yang S, Bing M, Chen F, Sun Y, Chen H, Chen W (2012) Autophagy regulation by the nuclear factor κB signal axis in acute pancreatitis. Pancreas 41:367–373PubMedCrossRefGoogle Scholar
  83. 83.
    Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15:1101–1111PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Gukovsky I, Pandol SJ, Mareninova OA, Shalbueva N, Jia W, Gukovskaya AS (2012) Impaired autophagy and organellar dysfunction in pancreatitis. J Gastroenterol Hepatol 27:27–32PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Feng D, Park O, Radaeva S, Wang H, Yin S, Kong X et al (2012) Interleukin-22 ameliorates cerulean-induced pancreatitis in mice by inhibiting the autophagic pathway. Int J Biol Sci 8:249–257PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Ohmuraya M, Yamamura K (2008) Autophagy and acute pancreatitis: a novel autophagy theory for trypsinogen activation. Autophagy 4:1060–1062PubMedCrossRefGoogle Scholar
  87. 87.
    Chinzei R, Masuda A, Nishiumi S, Nishida M, Onoyama M, Sanuki T et al (2011) Vitamin K3 attenuates cerulean-induced acute pancreatitis through inhibition of the autophagic pathway. Pancreas 40:84–94PubMedCrossRefGoogle Scholar
  88. 88.
    Sun X, Tang D (2014) HMGB1-dependent and -independent autophagy. Autophagy 10:1873–1876PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Gang Wang
    • 1
  • Feng-Zhi Qu
    • 1
  • Le Li
    • 1
  • Jia-Chen Lv
    • 1
  • Bei Sun
    • 1
  1. 1.Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina

Personalised recommendations