Skip to main content
Log in

Bcl-2 silencing attenuates hypoxia-induced apoptosis resistance in pulmonary microvascular endothelial cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Pulmonary arterial hypertension (PAH) is a life-threatening disorder that ultimately causes heart failure. While the underlying causes of this condition are not well understood, previous studies suggest that the anti-apoptotic nature of pulmonary microvascular endothelial cells (PMVECs) in hypoxic environments contributes to PAH pathogenesis. In this study, we focus on the contribution of Bcl-2 and hypoxia response element (HRE) to apoptosis-resistant endothelial cells and investigate the mechanism. PMVECs obtained from either normal rats or apoptosis-resistant PMVECs obtained from PAH rats were transduced with recombinant lentiviral vectors carrying either Bcl-2-shRNA or HRE combined Bcl-2-shRNA, and then cultured these cells for 24 h under hypoxic (5 % O2) or normoxic (21 % O2) conditions. In normal PMVECs, Bcl-2-shRNA or HRE combined with Bcl-2-shRNA transduction successfully decreased Bcl-2 expression, while increasing apoptosis as well as caspase-3 and P53 expression in a normoxic environment. In a hypoxic environment, the effects of Bcl-2-shRNA treatment on cell apoptosis, and on Bcl-2, caspase-3, P53 expression were significantly suppressed. Conversely, HRE activation combined with Bcl-2-shRNA transduction markedly enhanced cell apoptosis and upregulated caspase-3 and P53 expression, while decreasing Bcl-2 expression. Furthermore, in apoptosis-resistant PMVECs, HRE-mediated Bcl-2 silencing effectively enhanced cell apoptosis and caspase-3 activity. The apoptosis rate was significantly depressed when Lv-HRE-Bcl-2-shRNA was combined with Lv-P53-shRNA or Lv-caspase3-shRNA transduction in a hypoxic environment. These results suggest that HRE-mediated Bcl-2 inhibition can effectively attenuate hypoxia-induced apoptosis resistance in PMVECs by downregulating Bcl-2 expression and upregulating caspase-3 and P53 expression. This study therefore reveals critical insight into potential therapeutic targets for treating PAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sugumaran PK, Wang S, Song S, Nie X, Zhang L, Feng Y, Ma W, Zhu D (2014) 15-Oxo-eicosatetraenoic acid prevents serum deprivation-induced apoptosis of pulmonary arterial smooth muscle cells by activating pro-survival pathway. Prostaglandins Leukot Essent Fat Acids 90(4):89–98. doi:10.1016/j.plefa.2014.01.006

    Article  CAS  Google Scholar 

  2. Jiang J, Wang S, Wang Z, Ma J, Liu S, Li W, Zhu D (2011) The role of ERK1/2 in 15-HETE-inhibited apoptosis in pulmonary arterial smooth muscle cells. J Recep Signal Transduct Res 31(1):45–52. doi:10.3109/10799893.2010.512013

    Article  CAS  Google Scholar 

  3. Huh JW, Kim SY, Lee JH, Lee YS (2011) YC-1 attenuates hypoxia-induced pulmonary arterial hypertension in mice. Pulm Pharmacol Ther 24(6):638–646. doi:10.1016/j.pupt.2011.09.003

    Article  PubMed  CAS  Google Scholar 

  4. Lee FY, Lu HI, Zhen YY, Leu S, Chen YL, Tsai TH, Chung SY, Chua S, Sheu JJ, Hsu SY, Chang HW, Sun CK, Yip HK (2013) Benefit of combined therapy with nicorandil and colchicine in preventing monocrotaline-induced rat pulmonary arterial hypertension. Eur J Pharm Sci 50(3–4):372–384. doi:10.1016/j.ejps.2013.08.004

    Article  PubMed  CAS  Google Scholar 

  5. Bonnet S, Michelakis ED, Porter CJ, Andrade-Navarro MA, Thebaud B, Bonnet S, Haromy A, Harry G, Moudgil R, McMurtry MS, Weir EK, Archer SL (2006) An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension. Circulation 113(22):2630–2641. doi:10.1161/circulationaha.105.609008

    Article  PubMed  CAS  Google Scholar 

  6. Jeffery TK, Morrell NW (2002) Molecular and cellular basis of pulmonary vascular remodeling in pulmonary hypertension. Prog Cardiovasc Dis 45(3):173–202. doi:10.1053/pcad.2002.130041

    Article  PubMed  CAS  Google Scholar 

  7. Sakao S, Taraseviciene-Stewart L, Lee JD, Wood K, Cool CD, Voelkel NF (2005) Initial apoptosis is followed by increased proliferation of apoptosis-resistant endothelial cells. FASEB J 19(9):1178–1180. doi:10.1096/fj.04-3261fje

    PubMed  CAS  Google Scholar 

  8. Mandegar M, Fung YC, Huang W, Remillard CV, Rubin LJ, Yuan JX (2004) Cellular and molecular mechanisms of pulmonary vascular remodeling: role in the development of pulmonary hypertension. Microvasc Res 68(2):75–103. doi:10.1016/j.mvr.2004.06.001

    Article  PubMed  CAS  Google Scholar 

  9. Sakao S, Taraseviciene-Stewart L, Wood K, Cool CD, Voelkel NF (2006) Apoptosis of pulmonary microvascular endothelial cells stimulates vascular smooth muscle cell growth. Am J Physiol Lung Cell Mol Physiol 291(3):L362–L368. doi:10.1152/ajplung.00111.2005

    Article  PubMed  CAS  Google Scholar 

  10. Thomas HC, Lame MW, Dunston SK, Segall HJ, Wilson DW (1998) Monocrotaline pyrrole induces apoptosis in pulmonary artery endothelial cells. Toxicol Appl Pharmacol 151(2):236–244. doi:10.1006/taap.1998.8458

    Article  PubMed  CAS  Google Scholar 

  11. Masri FA, Xu W, Comhair SA, Asosingh K, Koo M, Vasanji A, Drazba J, Anand-Apte B, Erzurum SC (2007) Hyperproliferative apoptosis-resistant endothelial cells in idiopathic pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 293(3):L548–L554. doi:10.1152/ajplung.00428.2006

    Article  PubMed  CAS  Google Scholar 

  12. Nickel N, Jonigk D, Kempf T, Bockmeyer CL, Maegel L, Rische J, Laenger F, Lehmann U, Sauer C, Greer M, Welte T, Hoeper MM, Golpon HA (2011) GDF-15 is abundantly expressed in plexiform lesions in patients with pulmonary arterial hypertension and affects proliferation and apoptosis of pulmonary endothelial cells. Respir Res 12:62. doi:10.1186/1465-9921-12-62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Levy M, Maurey C, Celermajer DS, Vouhe PR, Danel C, Bonnet D, Israel-Biet D (2007) Impaired apoptosis of pulmonary endothelial cells is associated with intimal proliferation and irreversibility of pulmonary hypertension in congenital heart disease. J Am Coll Cardiol 49(7):803–810. doi:10.1016/j.jacc.2006.09.049

    Article  PubMed  CAS  Google Scholar 

  14. Ichimori H, Kogaki S, Takahashi K, Ishida H, Narita J, Nawa N, Baden H, Uchikawa T, Okada Y, Ozono K (2013) Drastic shift from positive to negative estrogen effect on bone morphogenetic protein signaling in pulmonary arterial endothelial cells under hypoxia. Circ J 77(8):2118–2126

    Article  PubMed  CAS  Google Scholar 

  15. Tuder RM, Chacon M, Alger L, Wang J, Taraseviciene-Stewart L, Kasahara Y, Cool CD, Bishop AE, Geraci M, Semenza GL, Yacoub M, Polak JM, Voelkel NF (2001) Expression of angiogenesis-related molecules in plexiform lesions in severe pulmonary hypertension: evidence for a process of disordered angiogenesis. J Pathol 195(3):367–374. doi:10.1002/path.953

    Article  PubMed  CAS  Google Scholar 

  16. Ke Q, Costa M (2006) Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 70(5):1469–1480. doi:10.1124/mol.106.027029

    Article  PubMed  CAS  Google Scholar 

  17. Ruan H, Wang J, Hu L, Lin CS, Lamborn KR, Deen DF (1999) Killing of brain tumor cells by hypoxia-responsive element mediated expression of BAX. Neoplasia 1(5):431–437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Jiang B, Dong H, Zhang Z, Wang W, Zhang Y, Xu X (2007) Hypoxic response elements control expression of human vascular endothelial growth factor(165) genes transferred to ischemia myocardium in vivo and in vitro. J Gene Med 9(9):788–796. doi:10.1002/jgm.1070

    Article  PubMed  CAS  Google Scholar 

  19. Cheng C, Liu H, Ge H, Qian J, Qin J, Sun L, Chen M, Yan M, Shen A (2007) Lipopolysaccharide induces expression of SSeCKS in rat lung microvascular endothelial cell. Mol Cell Biochem 305(1–2):1–8. doi:10.1007/s11010-007-9521-7

    Article  PubMed  CAS  Google Scholar 

  20. Huang H, Zhang P, Wang Z, Tang F, Jiang Z (2011) Activation of endothelin-1 receptor signaling pathways is associated with neointima formation, neoangiogenesis and irreversible pulmonary artery hypertension in patients with congenital heart disease. Circ J 75(6):1463–1471

    Article  PubMed  CAS  Google Scholar 

  21. Taraseviciene-Stewart L, Scerbavicius R, Choe KH, Cool C, Wood K, Tuder RM, Burns N, Kasper M, Voelkel NF (2006) Simvastatin causes endothelial cell apoptosis and attenuates severe pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 291(4):L668–L676. doi:10.1152/ajplung.00491.2005

    Article  PubMed  CAS  Google Scholar 

  22. Wilkins MR, Ali O, Bradlow W, Wharton J, Taegtmeyer A, Rhodes CJ, Ghofrani HA, Howard L, Nihoyannopoulos P, Mohiaddin RH, Gibbs JS (2010) Simvastatin as a treatment for pulmonary hypertension trial. Am J Respir Crit Care Med 181(10):1106–1113. doi:10.1164/rccm.2009111-699OC/rccm.200911-1699OC

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Chen C, Chen C, Wang Z, Wang L, Yang L, Ding M, Ding C, Sun Y, Lin Q, Huang X, Du X, Zhao X, Wang C (2012) Puerarin induces mitochondria-dependent apoptosis in hypoxic human pulmonary arterial smooth muscle cells. PLoS One 7(3):e34181. doi:10.1371/journal.pone.0034181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Li HL, Huang XP, Zhou XH, Ji TH, Wu ZQ, Wang ZQ, Jiang HY, Liu FR, Zhao T (2011) Correlation of seven biological factors (Hsp90a, p53, MDM2, Bcl-2, Bax, Cytochrome C, and Cleaved caspase 3) with clinical outcomes of ALK+ anaplastic large-cell lymphoma. Biomed Environ Sci 24(6):630–641. doi:10.3967/0895-3988.2011.06.007

    PubMed  CAS  Google Scholar 

  25. Sakao S, Taraseviciene-Stewart L, Lee JD (2005) Initial apoptosis is followed by increased proliferation of apoptosis-resistant endothelial cells. FASEB J 19(9):1178–1796

    PubMed  CAS  Google Scholar 

  26. Huang LE, Bunn HF (2003) Hypoxia-inducible factor and its biomedical relevance. J Biol Chem 278(22):19575–19578. doi:10.1074/jbc.R200030200

    Article  PubMed  CAS  Google Scholar 

  27. Fijalkowska I, Xu W, Comhair SA, Janocha AJ, Mavrakis LA, Krishnamachary B, Zhen L, Mao T, Richter A, Erzurum SC, Tuder RM (2010) Hypoxia inducible-factor1alpha regulates the metabolic shift of pulmonary hypertensive endothelial cells. Am J Pathol 176(3):1130–1138. doi:10.2353/ajpath.2010.090832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Semenza GL, Wang GL (1992) A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12(12):5447–5454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Park J, Park SY, Shin E, Lee SH, Kim YS, Lee DH, Roh GS, Kim HJ, Kang SS, Cho GJ, Jeong BY, Kim H, Choi WS (2014) Hypoxia inducible factor-1alpha directly regulates nuclear clusterin transcription by interacting with hypoxia response elements in the clusterin promoter. Mol Cells 37(2):178–186. doi:10.14348/molcells.2014.2349

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ahn YT, Chua MS, Whitlock JP Jr, Shin YC, Song WH, Kim Y, Eom CY, An WG (2010) Rodent-specific hypoxia response elements enhance PAI-1 expression through HIF-1 or HIF-2 in mouse hepatoma cells. Int J Oncol 37(6):1627–1638

    PubMed  CAS  Google Scholar 

  31. Semenza GL (2014) Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu Rev Pathol 9:47–71. doi:10.1146/annurev-pathol-012513-104720

    Article  PubMed  CAS  Google Scholar 

  32. Jeong CH, Lee YM, Choi KS, Seong YR, Kim YJ, Im DS, Kim KW (2005) Hypoxia-responsive element-mediated soluble Tie2 vector exhibits an anti-angiogenic activity in vitro under hypoxic condition. Int J Oncol 26(1):211–216

    PubMed  CAS  Google Scholar 

  33. Horiuchi A, Hayashi T, Kikuchi N, Hayashi A, Fuseya C, Shiozawa T, Konishi I (2012) Hypoxia upregulates ovarian cancer invasiveness via the binding of HIF-1alpha to a hypoxia-induced, methylation-free hypoxia response element of S100A4 gene. Int J Cancer 131(8):1755–1767. doi:10.1002/ijc.27448

    Article  PubMed  CAS  Google Scholar 

  34. Fujioka T, Matsunaga N, Okazaki H, Koyanagi S, Ohdo S (2010) Hypoxia-response plasmid vector producing bcl-2 shRNA enhances the apoptotic cell death of mouse rectum carcinoma. J Pharmacol Sci 113(4):353–361

    Article  PubMed  CAS  Google Scholar 

  35. Segura MM, Mangion M, Gaillet B, Garnier A (2013) New developments in lentiviral vector design, production and purification. Exp Opin Biol Ther 13(7):987–1011. doi:10.1517/14712598.2013.779249

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science and Technology Development Fund of Shanghai Pudong New Area (PKj2011-y36) and the National Nature Science Foundation of China (No. 81272145).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingchuan Li.

Ethics declarations

Conflict of Interest

We declare that we have no conflict of interest.

Additional information

Yongmei Cao and Zhen Jiang contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Jiang, Z., Zeng, Z. et al. Bcl-2 silencing attenuates hypoxia-induced apoptosis resistance in pulmonary microvascular endothelial cells. Apoptosis 21, 69–84 (2016). https://doi.org/10.1007/s10495-015-1184-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-015-1184-3

Keywords

Navigation