Skip to main content
Log in

SYK is a target of lymphocyte-derived microparticles in the induction of apoptosis of human retinoblastoma cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Retinoblastoma (Rb) is an aggressive childhood cancer of the developing retina. This disease is associated with epigenetic deregulation of several cancer pathways including upregulation of the proto-oncogene spleen tyrosine kinase (SYK). We have previously demonstrated that lymphocyte-derived microparticles (LMPs) possess strong cytotoxic effect on cancer cells. This report demonstrated that LMPs have potent pro-apoptotic properties on human Rb cells, which was associated with a strong reduction of SYK expression. Perturbing SYK activity in Rb cells induced cell apoptosis and upregulated expression of p53 and p21. Interestingly, inhibition of p53 or knockdown of p21, abolished LMP-induced caspase-3 activity and cell death. Blocking oxidized phospholipid-rich LMPs with a specific antibody significantly prevented LMP-induced Rb apoptosis and reversed the expression patterns of SYK, p53, p21. In summary, our results suggest that LMPs are important pro-apoptotic regulators for Rb cells through reduction of SYK expression and upregulation of the p53–p21 pathway which ultimately activates caspase-3. These data may open unexpected avenues for the development of LMPs as a novel therapeutic strategy that would be particularly useful and relevant for the treatment of Rb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM, Dryja TP (1986) A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323:643–646

    Article  CAS  PubMed  Google Scholar 

  2. Zhang J, Benavente CA, McEvoy J, Flores-Otero J, Ding L, Chen X, Ulyanov A, Wu G, Wilson M, Wang J, Brennan R, Rusch M, Manning AL, Ma J, Easton J, Shurtleff S, Mullighan C, Pounds S, Mukatira S, Gupta P, Neale G, Zhao D, Lu C, Fulton RS, Fulton LL, Hong X, Dooling DJ, Ochoa K, Naeve C, Dyson NJ, Mardis ER, Bahrami A, Ellison D, Wilson RK, Downing JR, Dyer MA (2012) A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature 481:329–334

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Laurie NA, Donovan SL, Shih CS, Zhang J, Mills N, Fuller C, Teunisse A, Lam S, Ramos Y, Mohan A, Johnson D, Wilson M, Rodriguez-Galindo C, Quarto M, Francoz S, Mendrysa SM, Guy RK, Marine JC, Jochemsen AG, Dyer MA (2006) Inactivation of the p53 pathway in retinoblastoma. Nature 444:61–66

    Article  CAS  PubMed  Google Scholar 

  4. Symonds H, Krall L, Remington L, Saenz-Robles M, Lowe S, Jacks T, Van Dyke T (1994) p53-dependent apoptosis suppresses tumor growth and progression in vivo. Cell 78:703–711

    Article  CAS  PubMed  Google Scholar 

  5. El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825

    Article  CAS  PubMed  Google Scholar 

  6. Chang LJ, Eastman A (2012) Decreased translation of p21waf1 mRNA causes attenuated p53 signaling in some p53 wild-type tumors. Cell cycle 11:1818–1826

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Yang C, Mwaikambo BR, Zhu T, Gagnon C, Lafleur J, Seshadri S, Lachapelle P, Lavoie JC, Chemtob S, Hardy P (2008) Lymphocytic microparticles inhibit angiogenesis by stimulating oxidative stress and negatively regulating VEGF-induced pathways. Am J Physiol Regul Integr Comp Physiol 294:R467–R476

    Article  CAS  PubMed  Google Scholar 

  8. Yang C, Xiong W, Qiu Q, Shao Z, Hamel D, Tahiri H, Leclair G, Lachapelle P, Chemtob S, Hardy P (2012) Role of receptor-mediated endocytosis in the antiangiogenic effects of human T lymphoblastic cell-derived microparticles. Am J Physiol Regul Integr Comp Physiol 302:R941–R949

    Article  CAS  PubMed  Google Scholar 

  9. Yang C, Gagnon C, Hou X, Hardy P (2010) Low density lipoprotein receptor mediates anti-VEGF effect of lymphocyte T-derived microparticles in Lewis lung carcinoma cells. Cancer Biol Ther 10:448–456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Yang C, Xiong W, Qiu Q, Tahiri H, Superstein R, Carret AS, Sapieha P, Hardy P (2014) Anti-proliferative and anti-tumour effects of lymphocyte-derived microparticles are neither species- nor tumour-type specific. J Extracell Vesicles. doi:10.3402/jev.v3.23034

    PubMed Central  PubMed  Google Scholar 

  11. Mwaikambo BR, Yang C, Chemtob S, Hardy P (2009) Hypoxia up-regulates CD36 expression and function via hypoxia-inducible factor-1- and phosphatidylinositol 3-kinase-dependent mechanisms. J Biol Chem 284:26695–26707

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Qiu Q, Xiong W, Yang C, Gagnon C, Hardy P (2013) Lymphocyte-derived microparticles induce bronchial epithelial cells’ pro-inflammatory cytokine production and apoptosis. Mol Immunol 55:220–230

    Article  CAS  PubMed  Google Scholar 

  13. Huber J, Vales A, Mitulovic G, Blumer M, Schmid R, Witztum JL, Binder BR, Leitinger N (2002) Oxidized membrane vesicles and blebs from apoptotic cells contain biologically active oxidized phospholipids that induce monocyte-endothelial interactions. Arterioscler Thromb Vasc Biol 22:101–107

    Article  CAS  PubMed  Google Scholar 

  14. Qiu Q, Xiong W, Yang C, Dai X, Dan X, Yang Z, Jiao Y, Xiang Y, Liu G, Hardy P (2014) Lymphocyte-derived microparticles induce apoptosis of airway epithelial cells through activation of p38 MAPK and production of arachidonic acid. Apoptosis 19:1113–1127

    Article  CAS  PubMed  Google Scholar 

  15. Mocsai A, Ruland J, Tybulewicz VL (2010) The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol 10:387–402

    Article  CAS  PubMed  Google Scholar 

  16. Bailet O, Fenouille N, Abbe P, Robert G, Rocchi S, Gonthier N, Denoyelle C, Ticchioni M, Ortonne JP, Ballotti R, Deckert M, Tartare-Deckert S (2009) Spleen tyrosine kinase functions as a tumor suppressor in melanoma cells by inducing senescence-like growth arrest. Cancer Res 69:2748–2756

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Kaplan D, Meyerson HJ, Li X, Drasny C, Liu F, Costaldi M, Barr P, Lazarus HM (2010) Correlation between ZAP-70, phospho-ZAP-70, and phospho-Syk expression in leukemic cells from patients with CLL. Cytometry B 78:115–122

    Google Scholar 

  18. Bieging KT, Mello SS, Attardi LD (2014) Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev 14:359–370

    Article  CAS  Google Scholar 

  19. Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M, Okita K, Yamanaka S (2009) Suppression of induced pluripotent stem cell generation by the p53–p21 pathway. Nature 460:1132–1135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Roninson IB (2002) Oncogenic functions of tumour suppressor p21(Waf1/Cip1/Sdi1): association with cell senescence and tumour-promoting activities of stromal fibroblasts. Cancer Lett 179:1–14

    Article  CAS  PubMed  Google Scholar 

  21. Gartel AL (2005) The conflicting roles of the cdk inhibitor p21(CIP1/WAF1) in apoptosis. Leuk Res 29:1237–1238

    Article  CAS  PubMed  Google Scholar 

  22. Gartel AL, Tyner AL (1999) Transcriptional regulation of the p21((WAF1/CIP1)) gene. Exp Cell Res 246:280–289

    Article  CAS  PubMed  Google Scholar 

  23. Hsu SL, Chen MC, Chou YH, Hwang GY, Yin SC (1999) Induction of p21(CIP1/Waf1) and activation of p34(cdc2) involved in retinoic acid-induced apoptosis in human hepatoma Hep3B cells. Exp Cell Res 248:87–96

    Article  CAS  PubMed  Google Scholar 

  24. Wu Q, Kirschmeier P, Hockenberry T, Yang TY, Brassard DL, Wang L, McClanahan T, Black S, Rizzi G, Musco ML, Mirza A, Liu S (2002) Transcriptional regulation during p21WAF1/CIP1-induced apoptosis in human ovarian cancer cells. J Biol Chem 277:36329–36337

    Article  CAS  PubMed  Google Scholar 

  25. Muralidharan-Chari V, Clancy JW, Sedgwick A, D’Souza-Schorey C (2010) Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci 123:1603–1611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Bochkov VN (2007) Inflammatory profile of oxidized phospholipids. Thromb Haemost 97:348–354

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Fonds de Recherche en Santé du Québec (FRSQ Vision Research Network) to P. Hardy. Qian Qiu is supported by the State Scholarship Fund of the Ministry of Education of Peoples’ Republic of China (20120761002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Hardy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 269 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Q., Yang, C., Xiong, W. et al. SYK is a target of lymphocyte-derived microparticles in the induction of apoptosis of human retinoblastoma cells. Apoptosis 20, 1613–1622 (2015). https://doi.org/10.1007/s10495-015-1177-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-015-1177-2

Keywords

Navigation