Skip to main content
Log in

In vitro antiproliferative, pro-apoptotic, antimetastatic and anti-inflammatory potential of 2,4-diacteylphloroglucinol (DAPG) by Pseudomonas aeruginosa strain FP10

  • Original paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The 2,4-diacteylphloroglucinol (DAPG), a polyketide metabolite extracted from Pseudomonas aeruginosa strain FP10, exhibited selective cytoxicity against lung (A549), breast (MDA MB-231), cervical (HeLa) and colon (HCT-15) cancer cells in differential and dose-dependent manner. The anticancer and antimetastatic activities of DAPG were mediated by the inhibition of ROS, NF-κB, Bcl-2, MMP-2, VEGF and primary inflammatory mediators such as TNF-α, IL-6, IL-1β and NO. The DAPG induced apoptosis in cancer cells by intrinsic and extrinsic pathways via the release of cytochrome-C, upregulation of Bax and the activation of caspases and also, exhibited anti-inflammatory activity by the inhibition of LPS-inflammed cell proliferation of macrophage (Raw 264.7), monocytic cells (THP-1) and peripheral blood mononuclear cells (PBMCs). Results further confirmed that the DAPG inhibited the primary inflammatory mediators in cancer cells and inflammed immune cells through the down regulation of NF-κB. In the present study, for the first time, antiproliferative, proapoptotic, antimetastatic and anti-inflammatory activities of DAPG in various cancer cells and inflammation-induced immune cells have been reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AO:

Acridine orange

Bax:

Bcl-2 associated X-protein

Bcl-2:

B-cell lymphoma 2

CRI:

Cancer-related inflammation

DCF:

2,7-Dichlorofluorescein

DCFDA:

2,7-Dichlorofluorescein diacetate

DMEM:

Dulbecco’s modified eagle medium

RPMI:

Rosewell park memorial institute

EB:

Ethidium bromide

FBS:

Fetal bovine serum

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

IL-1:

Interleukin-1

IL-1β:

Interleukin-1 beta

IL-6:

Interleukin-6

JSH:

23-4-Methyl-N1-(3-phenyl-propyl)-benzene-1,2-diamine

LDH:

Lactate dehydrogenase

LPS:

Lipopolysaccharride

MTT:

3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide

NO:

Nitric oxide

PE:

Phycoerthyrin

PI:

Propidium iodide

PPM:

Pigment producing media

RNase:

Ribonulease

ROS:

Reactive oxygen species

VEGF:

Vascular endothelial growth factor

VRSA:

Vancomycin resistant Staphylococcus aureus

VSV:

Vascular stomatitis viruses (VSV-1)

References

  1. Floor SL, Dumont JE, Maenhaut C, Raspe E (2012) Hallmarks of cancer: of all cancer cells, all the time? Trends Mol Med 18:509–515

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  3. Meacham CE, Morrison SJ (2013) Tumour heterogeneity and cancer cell plasticity. Nature 501:328–337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Cavallo F, De Giovanni C, Nanni P, Forni G, Lollini PL (2011) 2011: the immune hallmarks of cancer. Cancer Immunol Immunother 60:319–326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Igney FH, Krammer PH (2002) Immune escape of tumors: apoptosis resistance and tumor counterattack. J Leukoc Biol 71:907–920

    CAS  PubMed  Google Scholar 

  6. Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432:332–337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Dai Fukumura, Jain RK (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91:1071–1121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Pietras K, Ostman A (2010) Hallmarks of cancer: interactions with the tumor stroma. Exp Cell Res 316:1324–1331

    Article  CAS  PubMed  Google Scholar 

  9. Nelson D, Ganss R (2006) Tumor growth or regression: powered by inflammation. J Leukoc Biol 80:685–690

    Article  CAS  PubMed  Google Scholar 

  10. Smith GR, Missailidis S (2004) Cancer, inflammation and the AT1 and AT2 receptors. J Inflamm 1:1–12

    Article  CAS  Google Scholar 

  11. Lu H, Ouyang W, Huang C (2006) Inflammation, a key event in cancer development. Mol Cancer Res 4:221–233

    Article  PubMed  Google Scholar 

  12. Shigdar S, Li Y, Bhattacharya S, O’Connor M, Pu C, Lin J, Wang T, Xiang D, Kong L, Wei MQ, Zhu Y, Zhou S, Duan W (2014) Inflammation and cancer stem cells. Cancer Lett 345:271–278

    Article  CAS  PubMed  Google Scholar 

  13. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449:557–563

    Article  CAS  PubMed  Google Scholar 

  14. Riss J, Khanna C, Koo S, Chandramouli GV, HuY Yang H H, Kleiner DE, Rosenwald A, Schaefer CF, Ben-Sasson SA, Yang L, Powell J, Kane DW, Star RA, Aprelikova O, Bauer K, Vasselli JR, Maranchie JK, Kohn KW, Buetow KH, Linehan WM, Weinstein JN, Lee MP, Klausner RD, Barrett JC (2006) Cancers as wounds that do not heal: differences and similarities between renal regeneration/repair and renal cell carcinoma. Cancer Res 66:7216–7224

    Article  CAS  PubMed  Google Scholar 

  15. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444

    Article  CAS  PubMed  Google Scholar 

  16. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30:1073–1081

    Article  CAS  PubMed  Google Scholar 

  17. Koontongkaew S (2013) The tumor microenvironment contribution to development, growth, invasion and metastasis of head and neck Squamous cell carcinomas. J Cancer 4:66–83

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Coussens LM, Werb Z (2001) Inflammatory cells and cancer: think different! J Exp Med 193:F23–F26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Demaria S, Pikarsky E, Karin M, Coussens LM, Chen YC, El-Omar EM, Trinchieri G, Dubinett SM, Mao JT, Szabo E, Krieg A, Weiner GJ, Fox BA, Coukos G, Wang E, Abraham RT, Carbone M, Lotze MT (2010) Cancer and inflammation: promise for biologic therapy. J Immunother 33:335–351

    Article  PubMed Central  PubMed  Google Scholar 

  20. Mbeunkui F, Johann DJ (2009) Cancer and the tumor microenvironment: a review of an essential relationship. Cancer Chemother Pharmacol 63:571–582

    Article  PubMed Central  PubMed  Google Scholar 

  21. Kim Y, Stolarska MA, Othmer HG (2011) The role of the microenvironment in tumor growth and invasion. Prog Biophys Mol Biol 106:353–379

    Article  PubMed Central  PubMed  Google Scholar 

  22. Rivkin TL, Liubomirski Y, Bernstein B, Meshel T, Ben-Baruch A (2013) Inflammatory factors of the tumor microenvironment induce plasticity in non transformed breast epithelial cells: EMT, invasion, and collapse of normally organized breast. Neoplasia 15:1330–1346

    Article  Google Scholar 

  23. Jain RK (2013) Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J Clin Oncol 31:2205–2218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Gibbs JB (2000) Mechanism-based target identification and drug discovery in cancer research. Science 287:1969–1973

    Article  CAS  PubMed  Google Scholar 

  25. Schenone M, Dancik V, Wagner BK, Clemons PA (2013) Target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol 9:232–240

    Article  CAS  PubMed  Google Scholar 

  26. Singh IP, Bharate SP (2006) Phloroglucinol compounds of natural origin. Nat Prod Rep 23:558–591

    Article  CAS  Google Scholar 

  27. Bangera MG, Thamashow LS (1999) Identification and characterisation of gene cluster for synthesis of the polyketide antibiotic 2,4-Diacetylphloroglucinol from Pseudomonas Q2-87. J Bacteriol 181:3155–3163

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Kidarsa TA, Goebel NC, Zabriskie TM, Loper JE (2011) Phloroglucinol mediates cross-talk between the pyoluteorin and 2,4-diacetylphloroglucinol biosynthetic pathways in Pseudomonas fluorescens Pf-5. Mol Microbiol 81:395–414

    Article  CAS  PubMed  Google Scholar 

  29. Tada M, Takakuwa T, Nagai M, Yoshii T (1990) Antiviral and antimicrobial activity of 2,4-diacetylphloroglucinols, 2-acycyclohexane-1,3-diones and 2-carboxamidocyclo-hexane-1,3-diones. Agric Biol Chem 54:3061–3063

    Article  CAS  Google Scholar 

  30. Kamei Y, Isnansetyo A (2003) Lysis of methicillin-resistant Staphylococcus aureus by 2,4-diacetylphloroglucinol produced by Pseudomonas sp. AMSN isolated from a marine alga. Int J Antimicrobial Agents 21:71–74

    Article  CAS  Google Scholar 

  31. Isnansetyo A, Horikawa M, Kamei Y (2001) In vitro anti-methicillin-resistant Staphylococcus aureus activity of 2,4-diacetylphloroglucinol produced by Pseudomonas sp. AMSN isolated from a marine alga. J Antimicrobial Chemotherapy 47:719–730

    Article  Google Scholar 

  32. Isnansetyo A (2003) Antibacterial activity of 2,4-diacetylphloroglucinol produced by Pseudomonas sp. AMSN isolated from a marine alga, against vancomycin-resistant Staphylococcus aureus. Int J Anti Agents 22:545–547

    Article  CAS  Google Scholar 

  33. Leuner K, Heiser JH, Derksen S, Mladenov MI, Fehske CJ, Schubert R, Gollasch M, Schneider G, Harteneck C, Chatterjee SS, Muller WE (2010) Simple 2,4-diacylphloroglucinols as classic transient receptor potential-6 activators–identification of a novel pharmacophore. Mol Pharmacol 77:368–377

    Article  CAS  PubMed  Google Scholar 

  34. Ayyadurai N, Ravindra Naik P, Sreehari Rao M, Sunish Kumar R, Samrat SK, Manohar M, Sakthivel N (2006) Isolation and characterization of a novel banana rhizosphere bacterium as fungal antagonist and microbial adjuvant in micropropagation of banana. J Appl Microbiol 100:926–937

    Article  CAS  PubMed  Google Scholar 

  35. Zhu Y, Yu G, Zhang Y, Xu Z, Wang Y, Yan G, He Q (2013) A novel andrographolide AL-1 exerts its cytotoxicity on K562 cells through a ROS-dependent mechanism. Proteomics 13:169–178

    Article  CAS  PubMed  Google Scholar 

  36. Nunez R (2001) DNA measurement and cell cycle analysis by flow cytometry. Curr Issues Mol Biol 3:67–70

    CAS  PubMed  Google Scholar 

  37. Kennedy RK, Naik RP, Veena V, Lakshmi BS, Lakshmi P, Krishna R, Sakthivel N (2015) 5-Methyl phenazine-1-carboxylic acid: a novel bioactive metabolite by a rhizosphere soil bacterium that exhibits potent antimicrobial and anticancer activities. Chem-Biol Int 231:71–82

    Article  CAS  Google Scholar 

  38. Xu M, Bower KM, Wang S, Frank JA, Chen G, Ding M, Wang S, Shi X, Ke Z, Luo J (2010) Cyanidin-3-glucoside inhibits ethanol-induced invasion of breast cancer cells overexpressing ErbB2. Mol Cancer 9:9–14

    Article  Google Scholar 

  39. Ferlini C, Scambia G (2007) Assay for apoptosis using the mitochondrial probes, rhodamine123 and 10-N-nonyl acridine orange. Nat Protoc 2:3111–3114

    Article  CAS  PubMed  Google Scholar 

  40. Hong S, Kim SH, Rhee MH, Kim AR, Jung JH, Chun T, Yoo ES, Cho JY (2003) In vitro anti-inflammatory and pro-aggregative effects of a lipid compound, petrocortyne A, from marine sponges. Naunyn Schmiedebergs Arch Pharmacol 368:448–456

    Article  CAS  PubMed  Google Scholar 

  41. Kennedy RK, Veena V, Naik PR, Lakshmi P, Krishna R, Sudharani S, Sakthivel N (2015) Phenazine-1-carboxamide (PCN) from Pseudomonas sp. strain PUP6 selectively induced apoptosis in lung (A549) and breast (MDA MB-231) cancer cells by inhibition of antiapoptotic Bcl-2 family proteins. Apoptosis 20:858–868

    Article  CAS  PubMed  Google Scholar 

  42. Krutzik PO, Nolan GP (2003) Intracellular phospho-protein staining techniques for flow cytometry: monitoring single cell signaling events. Cytometry Part A 55A:61–70

    Article  CAS  Google Scholar 

  43. Shanmugaraj S, Selvaraj S, Murugan VP, Rajaganapathy BR, Shanmuganathan MV, Devaraj S, Subhadra LB (2010) 3-Hydroxylup-20(29)-ene-27,28-dioic acid dimethyl ester, a novel natural product from Plumbago zeylanica inhibits the proliferation and migration of MDA-MB-231 cells. Chem Biol Interact 188:412–420

    Article  Google Scholar 

  44. Zong H, Wang F, Fan QX, Wang LX (2012) Curcumin inhibits metastatic progression of breast cancer cell through suppression of urokinase-type plasminogen activator by NF-kappa B signaling pathways. Mol Biol Rep 39:4803–4808

    Article  CAS  PubMed  Google Scholar 

  45. Lin C, Hou W, Shen S, Juan S, Ko C, Wang L, Chen Y (2008) Quercetin inhibition of tumor invasion via suppressing PKCδ/ERK/AP-1-dependent matrix metalloproteinase-9 activation in breast carcinoma cells. Carcinogenesis 29:1807–1815

    Article  CAS  PubMed  Google Scholar 

  46. Li F, Sethi G (2010) Targeting transcription factor NF-kappaB to overcome chemoresistance and radioresistance in cancer therapy. Biochim Biophys Acta 1805:167–180

    CAS  PubMed  Google Scholar 

  47. Kracht M (2007) Targeting strategies to modulate the NF-κB and JNK signal transduction network. AntiInflammatory Antiallergy Agents Med Chem 6:71–84

    Article  CAS  Google Scholar 

  48. Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441:431–436

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The joint University Grant Commission-Council for Scientific and Industrial Research (joint UGC-CSIR), Government of India, New Delhi through a research fellowship to Ms. V. Veena and the financial support from the Department of Biotechnology (DBT), New Delhi and University Grants Commission-Special Assistance Programme (UGC-SAP) coordinated by Prof. N. Sakthivel are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natarajan Sakthivel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1023 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veena, V.K., Popavath, R.N., Kennedy, K. et al. In vitro antiproliferative, pro-apoptotic, antimetastatic and anti-inflammatory potential of 2,4-diacteylphloroglucinol (DAPG) by Pseudomonas aeruginosa strain FP10. Apoptosis 20, 1281–1295 (2015). https://doi.org/10.1007/s10495-015-1162-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-015-1162-9

Keywords

Navigation