Skip to main content
Log in

Human recombinant factor VIIa may improve heat intolerance in mice by attenuating hypothalamic neuronal apoptosis and damage

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Intolerance to heat exposure is believed to be associated with hypothalamo-pituitary-adrenocortical (HPA) axis impairment [reflected by decreases in blood concentrations of both adrenocorticotrophic-hormone (ACTH) and corticosterone]. The purpose of this study was to determine the effect of human recombinant factor VIIa (rfVIIa) on heat intolerance, HPA axis impairment, and hypothalamic inflammation, ischemic and oxidative damage, and apoptosis in mice under heat stress. Immediately after heat stress (41.2 °C for 1 h), mice were treated with vehicle (1 mL/kg of body weight) or rfVIIa (65–270 µg/kg of body weight) and then returned to room temperature (26 °C). Mice still alive on day 4 of heat exposure were considered survivors. Cellular ischemia markers (e.g., glutamate, lactate-to-pyruvate ratio), oxidative damage markers (e.g., nitric oxide metabolite, hydroxyl radials), and pro-inflammatory cytokines (e.g., interleukin-6, interleukin-1β, tumor necrosis factor-α) in hypothalamus were determined. In addition, blood concentrations of both ACTH and corticosterone were measured. Hypothalamic cell damage was assessed by determing the neuronal damage scores, whereas the hypothalamic cell apoptosis was determined by assessing the numbers of cells stained with terminal deoxynucleotidyl transferase-mediated αUTP nick-end labeling, caspase-3-positive cells, and platelet endothelial cell adhesion molecula-1-positive cells in hypothalamus. Compared with vehicle-treated heated mice, rfVIIa-treated heated mice had significantly higher fractional survival (8/10 vs 1/10), lesser thermoregulatory deficit (34.1 vs 24.8 °C), lesser extents of ischemic, oxidative, and inflammatory markers in hypothalamus, lesser neuronal damage scores and apoptosis in hypothalamus, and lesser HPA axis impairment. Human recombinant factor VIIa appears to exert a protective effect against heatstroke by attenuating hypothalamic cell apoptosis (due to ischemic, inflammatory, and oxidative damage) in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen SH, Lin MT, Chang CP (2013) Ischemic and oxidative damage to the hypothalamus may be responsible for heat stroke. Curr Neuropharmacol 11:129–140

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Chang CK, Chang CP, Chiu WT, Lin MT (2006) Prevention and repair of circulatory shock and cerebral ischemia/injury by various agents in experimental heatstroke. Curr Med Chem 13:3145–3154

    Article  PubMed  CAS  Google Scholar 

  3. Michel V, Peinnequin A, Alonso A, Buguet A, Cespuglio R, Canini F (2007) Decreased heat tolerance is associated with hypothalamo–pituitary– adrenocortical axis impairment. Neuroscience 147:522–531

    Article  PubMed  CAS  Google Scholar 

  4. Malamud N, Haymaker W, Custer RP (1946) Heat stroke; a clinico-pathologic study of 125 fatal cases. Mil Surg 99:397–449

    PubMed  CAS  Google Scholar 

  5. Cure M (1989) Plasma corticosterone response in continuous versus discontinuous chronic heat exposure in rat. Physiol Behav 45:1117–1122

    Article  PubMed  CAS  Google Scholar 

  6. Djordjevic J, Cvijic G, Davidovic V (2003) Different activation of ACTH and corticosterone release in response to various stressors in rats. Physiol Res 52:67–72

    PubMed  CAS  Google Scholar 

  7. Shapiro AD (2000) Recombinant factor VIIa in the treatment of bleeding in hemophilic children with inhibitors. Semin Thromb Hemost 26:413–419

    Article  PubMed  CAS  Google Scholar 

  8. Ingerslev J (2000) Efficacy and safety of recombinant factor VIIa in the prophylaxis of bleeding in various surgical procedures in hemophilic patients with factor VIII and factor 1× inhibitiors. Semin Thromb Hemost 26:425–432

    Article  PubMed  CAS  Google Scholar 

  9. Negrier C, Hay CRM (2000) The treatment of bleeding in hemophilic patients with inhibitors with recombinant factor VIIa. Semin Thromb Hemost 26:407–412

    Article  PubMed  CAS  Google Scholar 

  10. Hedner U (1998) Recombinant activated factor VII as a universal haemostatic agent. Blood Coagul Fibrin 9:S147–S152

    CAS  Google Scholar 

  11. Chao TC, Sinniah S, Pakiam JE (1981) Acute heat stroke deaths. Pathology 13:145–156

    Article  PubMed  CAS  Google Scholar 

  12. Sohal RS, Sun SC, Colcolough HL, Burch GE (1968) Heat stroke. An electron microscopic study of endothelia cell damage and disseminated intravascular coagulation. Arch Intern Med 122:43–47

    Article  PubMed  CAS  Google Scholar 

  13. Chatterjee S, Premachandran S, Bagewadikar RS, Bhattacharya S, Chattopadhyay S, Poduval TB (2006) Arginine metabolic pathways determine its therapeutic benefit in experimental heatstroke: role of Th1/Th2 cytokine balance. Nitric Oxide 15:408–416

    Article  PubMed  CAS  Google Scholar 

  14. Chatterjee S, Premachandran S, Sharma D, Bagewadikar RS, Poduval TB (2005) Therapeutic treatment with l-arginine rescues mice from heat shock-induced death: physiological and molecular mechanisms. Shock 24:341–347

    Article  PubMed  CAS  Google Scholar 

  15. Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11:491–498

    Article  PubMed  CAS  Google Scholar 

  16. Newman PJ, Newman DK (2003) Signal transduction pathways mediated by PECAM-1: new roles for an old molecule in platelet and vascular cell biology. Arterioscler Thromb Vasc Biol 23:953–964

    Article  PubMed  CAS  Google Scholar 

  17. Gao C, Sun W, Christofidou-Solomidou M, Sawada M, Newman DK, Bergom C, Albelda SM, Matsuyama S, Newman PJ (2003) PECAM-1 functions as a specific and potent inhibitor of mitochondrial-dependent apoptosis. Blood 102:169–179

    Article  PubMed  CAS  Google Scholar 

  18. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    Article  PubMed  CAS  Google Scholar 

  19. Mullane KM, Kraemer R, Smith B (1985) Myeloperoxidase activity as a quantitative assessment of neutrophil infiltration into ischemic myocardium. J Pharmacol Methods 14:157–167

    Article  PubMed  CAS  Google Scholar 

  20. Chen SH, Chang FM, Tsai YC, Huang KF, Lin MT (2005) Resuscitation from experimental heatstroke by transplantation of human umbilical cord blood cells. Crit Care Med 33:1377–1383

    Article  PubMed  Google Scholar 

  21. Togashi H, Mori K, Ueno K, Matsumoto M, Suda N, Saito H et al (1998) Consecutive evaluation of nitric oxide production after transient cerebral ischemia in the rat hippocampus using in vivo brain microdialysis. Neurosci Lett 240:53–57

    Article  PubMed  CAS  Google Scholar 

  22. Poduval TB, Chatterjee S, Sainis KB (2003) Effect of nitric oxide on mortality of mice after whole body hyperthermia. Int J Hyperther 19:35–44

    Article  CAS  Google Scholar 

  23. Lin CY, Hsu CC, Lin MT, Chen SH (2012) Flutamide, an androgen receptor antagonist, improves heatstroke outcomes in mice. Eur J Pharmacol 688:62–67

    Article  PubMed  CAS  Google Scholar 

  24. Lin CY, Lin MT, Cheng RT, Chen SH (2010) Testosterone depletion by castration may protect mice from heat-induced multiple organ damage and lethality. J Biomed Biotechnol 2010:485306

    Article  PubMed  PubMed Central  Google Scholar 

  25. Berg DJ, Kühn R, Rajewsky K, Müller W, Menon S, Davidson N et al (1995) Interleukin-10 is a central regulator of the response to LPS in murine models of endotoxic shock and the Shwartzman reaction but not endotoxin tolerance. J Clin Invest 96:2339–2347

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Rennick DM, Fort MM, Davidson NJ (1997) Studies with IL-10-/- mice: an overview. J Leukoc Biol 61:389–396

    PubMed  CAS  Google Scholar 

  27. Endo S, Inada K, Kasai T, Takakuwa T, Yamada Y, Koike S et al (1995) Levels of soluble adhesion molecules and cytokines in patients with septic multiple organ failure. J Inflamm 46:212–219

    PubMed  CAS  Google Scholar 

  28. Gérard C, Bruyns C, Marchant A, Abramowicz D, Vandenabeele P, Delvaux A et al (1993) Interleukin 10 reduces the release of tumor necrosis factor and prevents lethality in experimental endotoxemia. J Exp Med 177:547–550

    Article  PubMed  Google Scholar 

  29. Standiford TJ, Strieter RM, Lukacs NW, Kunkel SL (1995) Neutralization of IL-10 increases lethality in endotoxemia. Cooperative effects of macrophage inflammatory protein-2 and tumor necrosis factor. J Immunol 155:2222–2229

    PubMed  CAS  Google Scholar 

  30. Leon LR, Blaha MD, Dubose DA (2006) Time course of cytokine, corticosterone, and tissue injury response in mice during heat strain recovery. J Appl Physiol 100:1400–1409

    Article  PubMed  CAS  Google Scholar 

  31. Kadhim HJ, Duchateau J, Sébire G (2008) Cytokines and brain injury: invited review. J Intensive Care Med 23:236–249

    Article  PubMed  Google Scholar 

  32. Bowen KK, Dempsey RJ, Vemuganti R (2011) Adult interleukin-6 knockout mice show compromised neurogenesis. NeuroReport 22:126–130

    Article  PubMed  CAS  Google Scholar 

  33. Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302(5651):1760

    Article  PubMed  CAS  Google Scholar 

  34. Vallieres L, Campbell IL, Gage FH, Sawchenko PE (2002) Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interluekin-6. J Neurosci 22:486–492

    PubMed  CAS  Google Scholar 

  35. Ji R, Tian S, Lu HJ, Lu Q, Zheng Y, Wang X et al (2013) TAM receptors affect adult brain neurogenesis by negative regulation of microglial cell activation. J Immunol 191:6165–6177

    Article  PubMed  CAS  Google Scholar 

  36. Jongeneel VC (1994) Regulation of the TNF-α gene. Prog Clin Biol Res 388:367–381

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants NSC99-2314-B-384-006-MY2, NSC99-2314-B-384-004-MY3, and NSC98-2314-B-218-MY2 from the Taiwan National Science Council; Grant DOH99-TD-B-111-003 from the Taiwan Department of Health; funds from the Taiwan Center of Excellence for Clinical Trials and Research in Neuroscience. We would like to thank four anonymous reviewers and the editor for their comments.

Conflict of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng-Hsien Lin or Ming-Chi Yung.

Additional information

Chuan-Chih Hsu and Sheng-Hsien Chen have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, CC., Chen, SH., Lin, CH. et al. Human recombinant factor VIIa may improve heat intolerance in mice by attenuating hypothalamic neuronal apoptosis and damage. Apoptosis 19, 1484–1496 (2014). https://doi.org/10.1007/s10495-014-1020-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-1020-1

Keywords

Navigation