Skip to main content

Advertisement

Log in

Piperlongumine, an alkaloid causes inhibition of PI3 K/Akt/mTOR signaling axis to induce caspase-dependent apoptosis in human triple-negative breast cancer cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The phosphatidylinositol 3-kinase (PI3 K)/Akt/mammalian target of rapamycin (mTOR) signaling axis plays a central role in cell proliferation, growth and survival under physiological conditions. However, aberrant PI3 K/Akt/mTOR signaling has been implicated in many human cancers, including human triple negative breast cancer. Therefore, dual inhibitors of PI3 K/Akt and mTOR signaling could be valuable agents for treating breast cancer. The objective of this study was to investigate the effect of piperlongumine (PPLGM), a natural alkaloid on PI3 K/Akt/mTOR signaling, Akt mediated regulation of NF-kB and apoptosis evasion in human breast cancer cells. Using molecular docking studies, we found that PPLGM physically interacts with the conserved domain of PI3 K and mTOR kinases and the results were comparable with standard dual inhibitor PF04691502. Our results demonstrated that treatment of different human triple-negative breast cancer cells with PPLGM resulted in concentration- and time-dependent growth inhibition. The inhibition of cancer cell growth was associated with G1-phase cell cycle arrest and down-regulation of the NF-kB pathway leads to activation of the mitochondrial apoptotic pathway. It was also found that PPLGM significantly decreased the expression of p-Akt, p70S6K1, 4E-BP1, cyclin D1, Bcl-2, p53 and increased expression of Bax, cytochrome c in human triple-negative breast cancer cells. Although insulin treatment increased the phosphorylation of Akt (Ser473), p70S6K1, 4E-BP1, PPLGM abolished the insulin mediated phosphorylation, it clearly indicates that PPLGM acts through PI3 k/Akt/mTOR axis. Our results suggest that PPLGM may be an effective therapeutic agent for the treatment of human triple negative breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Qi Y, Fu X, Xiong Z et al (2012) Methylseleninic acid enhances paclitaxel efficacy for the treatment of triple-negative breast cancer. PLoS ONE 7:e31539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Stead LA, Lash TL, Sobieraj JE et al (2009) Triple-negative breast cancers are increased in black women regardless of age or body mass index. Breast Cancer Res 11:R18

    Article  PubMed Central  PubMed  Google Scholar 

  3. Gluz O, Liedtke C, Gottschalk N, Pusztai L, Nitz U, Harbeck N (2009) Triple-negative breast cancer-current status and future directions. Ann Oncol 20:1913–1927

    Article  CAS  PubMed  Google Scholar 

  4. Kurebayashi J (2009) Possible treatment strategies for triple-negative breast cancer on the basis of molecular characteristics. Breast Cancer 16:275–280

    Article  PubMed  Google Scholar 

  5. Tate CR, Rhodes LV, Segar HC et al (2012) Targeting triple-negative breast cancer cells with the histone deacetylase inhibitor panobinostat. Breast Cancer Res 14:R79

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Gelmon K, Dent R, Mackey JR, Laing K, McLeod D, Verma S (2012) Targeting triple-negative breast cancer: optimising therapeutic outcomes. Ann Oncol 23:2223–2234

    Article  CAS  PubMed  Google Scholar 

  7. Ettinger DS (2006) Clinical implications of EGFR expression in the development and progression of solid tumors: focus on non-small cell lung cancer. Oncologist 11:358–373

    Article  CAS  PubMed  Google Scholar 

  8. X-r Li, Liu M, Zhang Y-j et al (2011) CK5/6, EGFR, Ki-67, cyclin D1, and nm23-H1 protein expressions as predictors of pathological complete response to neoadjuvant chemotherapy in triple-negative breast cancer patients. Med Oncol 28:129–134

    Article  Google Scholar 

  9. Lee SE, Park BS, Bayman P, Baker JL, Choi WS, Campbell BC (2007) Suppression of ochratoxin biosynthesis by naturally occurring alkaloids. Food Addit Contam 24:391–397

    Article  CAS  PubMed  Google Scholar 

  10. Rodrigues R, Lanznaster D, Longhi Balbinot DT, Gadotti VM, Facundo VA, Santos ARS (2009) Antinociceptive effect of crude extract, fractions and three alkaloids obtained from fruits of Piper tuberculatum. Biol Pharm Bull 32:1809–1812

    Article  CAS  PubMed  Google Scholar 

  11. Cicero Bezerra Felipe F, Sousa Filho T, de Oliveira Souza LE et al (2007) Piplartine, an amide alkaloid from Piper tuberculatum, presents anxiolytic and antidepressant effects in mice. Phytomedicine 14:605–612

    Article  CAS  PubMed  Google Scholar 

  12. Golovine KV, Makhov PB, Teper E et al (2013) Piperlongumine induces rapid depletion of the androgen receptor in human prostate cancer cells. Prostate 73:23–30

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Raj L, Ide T, Gurkar AU et al (2011) Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 475:231–234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Jarvius M, Fryknas M, D’Arcy P et al (2013) Piperlongumine induces inhibition of the ubiquitin-proteasome system in cancer cells. Biochem biophys res commun 431:117–123

    Article  CAS  PubMed  Google Scholar 

  15. Randhawa H, Kibble K, Zeng H, Moyer MP, Reindl KM (2013) Activation of ERK signaling and induction of colon cancer cell death by piperlongumine. Toxicol Vitr 27:1626–1633

    Article  CAS  Google Scholar 

  16. Makhov P, Golovine K, Teper E et al (2014) Piperlongumine promotes autophagy via inhibition of Akt/mTOR signalling and mediates cancer cell death. Br J Cancer 110:899–907

    Article  CAS  PubMed  Google Scholar 

  17. Goel A, Kunnumakkara AB, Aggarwal BB (2008) Curcumin as “Curecumin”: from kitchen to clinic. Biochem Pharmacol 75:787–809

    Article  CAS  PubMed  Google Scholar 

  18. Rose PW, Beran B, Bi C et al (2011) The RCSB Protein Data Bank: redesigned web site and web services. Nucleic Acids Res 39:D392–D401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. http://www.rcsb.org

  20. Mulakayala C, Babajan B, Madhusudana P et al (2013) Synthesis and evaluation of resveratrol derivatives as new chemical entities for cancer. J Mol Graph Model 41:43–54

    Article  CAS  PubMed  Google Scholar 

  21. Friesner RA, Murphy RB, Repasky MP et al (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177–6196

    Article  CAS  PubMed  Google Scholar 

  22. Naidu VGM, Bandari UM, Giddam AK et al (2013) Apoptogenic activity of ethyl acetate extract of leaves of Memecylon edule on human gastric carcinoma cells via mitochondrial dependent pathway. Asian Pac J Trop Med 6:337–345

    Article  CAS  PubMed  Google Scholar 

  23. Tikoo K, Sane MS, Gupta C (2011) Tannic acid ameliorates doxorubicin-induced cardiotoxicity and potentiates its anti-cancer activity: potential role of tannins in cancer chemotherapy. Toxicol Appl Pharmacol 251:191–200

    Article  CAS  PubMed  Google Scholar 

  24. Arbab IA, Abdul AB, Sukari MA et al (2013) Dentatin isolated from Clausena excavata induces apoptosis in MCF-7 cells through the intrinsic pathway with involvement of NF-κB signalling and G0/G1 cell cycle arrest: a bioassay-guided approach. J Ethnopharmacol 145:343–354

    Article  CAS  PubMed  Google Scholar 

  25. Ribble D, Goldstein NB, Norris DA, Shellman YG (2005) A simple technique for quantifying apoptosis in 96-well plates. BMC Biotechnol 5:5–12

    Article  Google Scholar 

  26. Kennedy SG, Kandel ES, Cross TK, Hay N (1999) Akt/Protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria. Mol Cell Biol 19:5800–5810

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Kloesch B, Becker T, Dietersdorfer E, Kiener H, Steiner G (2013) Anti-inflammatory and apoptotic effects of the polyphenol curcumin on human fibroblast-like synoviocytes. Int Immunopharmacol 15:400–405

    Article  CAS  PubMed  Google Scholar 

  28. Lee E-J, Oh S-Y, Sung M-K (2012) Luteolin exerts anti-tumor activity through the suppression of epidermal growth factor receptor-mediated pathway in MDA-MB-231 ER-negative breast cancer cells. Food Chem Toxicol 50:4136–4143

    Article  CAS  PubMed  Google Scholar 

  29. Giri K, Ghosh U, Bhattacharyya NP, Basak S (2003) Caspase 8 mediated apoptotic cell death induced by beta-sheet forming polyalanine peptides. FEBS Lett 555:380–384

    Article  CAS  PubMed  Google Scholar 

  30. Kim HJ, Suh H-J, Kim JH, Park S, Joo YC, Kim J-S (2010) Antioxidant activity of glyceollins derived from soybean elicited with Aspergillus sojae. J Agric Food Chem 58:11633–11638

    Article  CAS  PubMed  Google Scholar 

  31. Ovadje P, Chatterjee S, Griffin C, Tran C, Hamm C, Pandey S (2011) Selective induction of apoptosis through activation of caspase-8 in human leukemia cells (Jurkat) by dandelion root extract. J Ethnopharmacol 133:86–91

    Article  CAS  PubMed  Google Scholar 

  32. Willems L, Tamburini J, Chapuis N, Lacombe C, Mayeux P, Bouscary D (2012) PI3 K and mTOR signaling pathways in cancer: new data on targeted therapies. Curr oncol rep 14:129–138

    Article  CAS  PubMed  Google Scholar 

  33. Wallin JJ, Edgar KA, Guan J et al (2011) GDC-0980 is a novel class I PI3 K/mTOR kinase inhibitor with robust activity in cancer models driven by the PI3 K pathway. Mol Cancer Ther 10:2426–2436

    Article  CAS  PubMed  Google Scholar 

  34. Yuan J, Mehta PP, Yin M-J et al (2011) PF-04691502, a potent and selective oral inhibitor of PI3 K and mTOR kinases with antitumor activity. Mol Cancer Ther 10:2189–2199

    Article  CAS  PubMed  Google Scholar 

  35. Cheng H, Bagrodia S, Bailey S et al (2010) Discovery of the highly potent PI3 K/mTOR dual inhibitor PF-04691502 through structure based drug design. Med Chem Comm 1:139–144

    Article  CAS  Google Scholar 

  36. Yao Z, Yao J, He X, Li Z, Liu Y (2013) Experimental study of piperlongumine inducing apoptosis of human breast adenoma MDA-MB-231 cells. Chin-Ger J Clin Oncol 12:319–325

    Article  CAS  Google Scholar 

  37. Mao Z, Xia W, Wang J et al (2013) Perfluorooctane sulfonate induces apoptosis in lung cancer A549 cells through reactive oxygen species†mediated mitochondrion†dependent pathway. J Appl Toxicol 33:1268–1276

    CAS  Google Scholar 

  38. Deniaud A, Maillier E, Poncet D, Kroemer G, Lemaire C, Brenner C (2008) Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis. Oncogene 27:285–299

    Article  CAS  PubMed  Google Scholar 

  39. Tait SWG, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11:621–632

    Article  CAS  PubMed  Google Scholar 

  40. Pal HC, Sharma S, Elmets CA, Athar M, Afaq F (2013) Fisetin inhibits growth, induces G2/M arrest and apoptosis of human epidermoid carcinoma A431 cells: role of mitochondrial membrane potential disruption and consequent caspases activation. Exp Dermatol 22:470–475

    Article  CAS  PubMed  Google Scholar 

  41. Zurlo D, Leone C, Assante G et al (2013) Cladosporol a stimulates G1-phase arrest of the cell cycle by up-regulation of p21waf1/cip1 expression in human colon carcinoma HT-29 cells. Mol Carcinog 52:1–17

    Article  CAS  PubMed  Google Scholar 

  42. Reuter S, Eifes S, Dicato M, Aggarwal BB, Diederich M (2008) Modulation of anti-apoptotic and survival pathways by curcumin as a strategy to induce apoptosis in cancer cells. Biochem Pharmacol 76:1340–1351

    Article  CAS  PubMed  Google Scholar 

  43. Ola MS, Nawaz M, Ahsan H (2011) Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Mol Cell Biochem 351:41–58

    Article  CAS  PubMed  Google Scholar 

  44. Gurtner A, Starace G, Norelli G, Piaggio G, Sacchi A, Bossi G (2010) Mutant p53-induced up-regulation of mitogen-activated protein kinase kinase 3 contributes to gain of function. J Biol Chem 285:14160–14169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Hupp T, Lane D, Ball K (2000) Strategies for manipulating the p53 pathway in the treatment of human cancer. Biochem J 352:1–17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Hui L, Zheng Y, Yan Y, Bargonetti J, Foster DA (2006) Mutant p53 in MDA-MB-231 breast cancer cells is stabilized by elevated phospholipase D activity and contributes to survival signals generated by phospholipase D. Oncogene 25:7305–7310

    Article  CAS  PubMed  Google Scholar 

  47. Surviladze Z, Sterk RT, DeHaro SA, Ozbun MA (2013) Cellular entry of human papillomavirus type 16 involves activation of the phosphatidylinositol 3-kinase/Akt/mTOR pathway and inhibition of autophagy. J Virol 87:2508–2517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Martelli AM, Chiarini F, Evangelisti C et al (2012) Two hits are better than one: targeting both phosphatidylinositol 3-kinase and mammalian target of rapamycin as a therapeutic strategy for acute leukemia treatment. Oncotarget 3:371

    PubMed Central  PubMed  Google Scholar 

  49. Inoue R, N-a Matsuki, Jing G, Kanematsu T, Abe K, Hirata M (2005) The inhibitory effect of alendronate, a nitrogen-containing bisphosphonate on the PI3 K-Akt-NFkB pathway in osteosarcoma cells. Br J Pharmacol 146:633–641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. DiDonato JA, Mercurio F, Karin M (2012) NFkB and the link between inflammation and cancer. Immunol Rev 246:379–400

    Article  PubMed  Google Scholar 

  51. Saiki S, Sasazawa Y, Imamichi Y et al (2011) Caffeine induces apoptosis by enhancement of autophagy via PI3 K/Akt/mTOR/p70S6 K inhibition. Autophagy 7:176–187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

SS, DT and MKJ thank Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Government of India and Project Director, NIPER Hyderabad for providing fellowship and research activity. The author’s are grateful to the anonymous reviewers for their critical suggestions to improve the quality as well as clarity of the manuscript. Further, the authors would like to thank Dr. N. Srinivas and Mr. V. Sudhakar Reddy for critically reading the manuscript and improving the language. Further, the technical guidance for performing RT-PCR studies rendered by Dr. Singareddy Sreenivasa Reddy, Research Associate, Department of Biochemistry, National Institute of Nutrition, Hyderabad is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. M. Naidu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16318 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrivastava, S., Kulkarni, P., Thummuri, D. et al. Piperlongumine, an alkaloid causes inhibition of PI3 K/Akt/mTOR signaling axis to induce caspase-dependent apoptosis in human triple-negative breast cancer cells. Apoptosis 19, 1148–1164 (2014). https://doi.org/10.1007/s10495-014-0991-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-0991-2

Keywords

Navigation