Skip to main content

Advertisement

Log in

Ursolic acid differentially modulates apoptosis in skin melanoma and retinal pigment epithelial cells exposed to UV–VIS broadband radiation

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The signaling pathways via mTOR (mammalian target of rapamycin) and AMPK (AMP-activated protein kinase) play key roles in transcription, translation and carcinogenesis, and may be activated by light exposure. These pathways can be modulated by naturally occurring compounds, such as the triterpenoid, ursolic acid (UA). Previously, the transcription factors p53 and NF-κB, which transactivate mitochondrial apoptosis-related genes, were shown to be differentially modulated by UA. UA-modulated apoptosis, following exposure to UV–VIS radiation (ultraviolet to visible light broadband radiation, hereafter abbreviated to UVR), is observed to correspond to differential levels of oxidative stress in retinal pigment epithelial (RPE) and skin melanoma (SM) cells. The cellular response to this phytochemical was characterized using western blot, flow cytometry, microscopy with reactive oxidative species probes MitoTracker and dihydroethidium, and membrane permeability assay. UA pretreatment potentiated cell cycle arrest and UVR-induced apoptosis selectively in SM cells while reducing photo-oxidative stress in the DNA of RPE cells presumably by antioxidant activity of UA. Mechanistically, the nuclear transportation of p65 and p53 was reduced by UA administration prior to UVR exposure while the levels of p65 and p53 nuclear transportation in SM cells were sustained at a substantially higher level. Finally, the mitochondrial functional assay showed that UVR induced the collapse of the mitochondrial membrane potential, and this effect was exacerbated by rapamycin or UA pretreatment in SM preferentially. These results were consistent with reduced proliferation observed in the clonogenic assay, indicating that UA treatment enhanced the phototoxicity of UVR, by modulating the activation of p53 and NF-κB and initiating a mitogenic response to optical radiation that triggered mitochondria-dependent apoptosis, particularly in skin melanoma cells. The study indicates that this compound has multiple actions with the potential for protecting normal cells while sensitizing skin melanoma cells to UV irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Ursolic acid:

UA

Retinal pigment epithelial:

RPE

Skin melanoma:

SM

Ultraviolet to visible light:

UV–VIS

Ultraviolet to visible light broadband radiation:

UVR

Dihydroethidium:

DHE

References

  1. Glickman RD (2002) Phototoxicity to the retina: mechanisms of damage. Int J Toxicol 21:473–490

    Article  PubMed  CAS  Google Scholar 

  2. Niemz M (2007) Laser-tissue interactions: fundamentals and applications. Springer, Berlin, pp 47–58

    Google Scholar 

  3. Sen CK, Sies H, Baeuerle PA (2000) Antioxidant and redox regulation of genes. Academic Press, San Diego, pp 3–20

    Google Scholar 

  4. Dalton TP, Shertzer HG, Puga A (1999) Regulation of gene expression by reactive oxygen. Annu Rev Pharmacol Toxicol 39:67–101

    Article  PubMed  CAS  Google Scholar 

  5. Subrahmanyam YY, McGirr LG, O’Brien PJ (1987) Glutathione oxidation during peroxidase catalysed drug metabolism. Chem Biol Interact 61:45–59

    Article  PubMed  CAS  Google Scholar 

  6. Gibbs LS, Del Vecchio PJ, Shaffer JB (1992) Mn and Cu/Zn SOD expression in cells from LPS-sensitive and LPS-resistant mice. Free Rad Biol Med 12:107–111

    Article  PubMed  CAS  Google Scholar 

  7. Deby C, Goutier R (1990) New perspectives on the biochemistry of superoxide anion and the efficiency of superoxide dismutases. Biochem Pharmacol 39:399–405

    Article  PubMed  CAS  Google Scholar 

  8. Godley BF, Shamsi FA, Liang FQ, Jarrett SG, Davies S, Boulton M (2005) Blue light induces mitochondrial DNA damage and free radical production in epithelial cells. J Biol Chem 280(22):21061–21066

    Article  PubMed  CAS  Google Scholar 

  9. Ravanat JL, Douki T, Cadet J (2001) Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol B 63(1–3):88–102

    Article  PubMed  CAS  Google Scholar 

  10. Akca HA, Demiray Tokgun O, Yokota J (2011) Invasiveness and anchorage independent growth ability augmented by PTEN inactivation through the PI3 K/AKT/NF-κB pathway in lung cancer cells. Lung Cancer 73:302–309

    Article  PubMed  Google Scholar 

  11. Chen AC-H, Arany PR, Huang Y-Y, Tomkinson EM, Sharma SK, Kharkwal GB, Saleem T, Mooney D, Yull FE, Blackwell TS, Hamblin MR (2011) Low-level laser therapy activates NF-κB via generation of reactive oxygen species in mouse embryonic fibroblasts. PLoS ONE 6:e22453

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Tibbetts RS, Brumbaugh KM, Williams JM, Sarkaria JN, Cliby WA, Shieh S-Y, Taya Y, Prives C, Abraham RT (1999) A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev 13:152–157

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Chipuk JE, Bouchier-Hayes L, Kuwana T, Newmeyer DD, Green DR (2005) PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 9:1732–1735

    Article  Google Scholar 

  14. Mohan M, Taneja TK, Sahdev S, Mohareer K, Begum R, Athar M, Sah NK, Hasnain SE (2003) Antioxidants prevent UV-induced apoptosis by inhibiting mitochondrial cytochrome c release and caspase activation in Spodoptera frugiperda (Sf9) cells. Cell Biol Int 27:483–490

    Article  PubMed  CAS  Google Scholar 

  15. Sharma PK, Dwarakanath BS, Varshney R (2012) Radiosensitization by 2-deoxy-d-glucose and 6-aminonicotinamide involves activation of redox sensitive ASK1-JNK/p38MAPK signaling in head and neck cancer cells. Free Radic Biol Med 53:1500–1513

    Article  PubMed  CAS  Google Scholar 

  16. Bode AM, Dong Z (2003) Mitogen-activated protein kinase activation in UV-induced signal transduction. Sci STKE 2003:115

    Google Scholar 

  17. Kim JH, Park JM, Kim E-K, Lee JO, Lee SK, Jung JH, You GY, Park SH, Suh P-G, Kim H (2010) Curcumin stimulates glucose uptake through AMPK-p38 MAPK pathways in L6 myotube cells. J Cell Physiol 223:771–778

    PubMed  CAS  Google Scholar 

  18. Tabidi I, Saggerson D (2012) Inactivation of the AMP-activated protein kinase by glucose in cardiac myocytes: a role for the pentose phosphate pathway. Biosci Rep 32:229–239

    Article  PubMed  CAS  Google Scholar 

  19. Lomonosova E, Ryerse J, Chinnadurai G (2009) BAX/BAK—independent mitoptosis during cell death induced by proteasome inhibition? Mol Cancer Res 7:1268–1284

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Le SB, Hailer MK, Buhrow S, Wang Q, Flatten K, Pediaditakis P, Bible KC, Lewis LD, Sausville EA, Pang YP, Ames MM, Lemasters JJ, Holmuhamedov EL, Kaufmann SH (2007) Inhibition of mitochondrial respiration as a source of adaphostin-induced reactive oxygen species and cytotoxicity. J Biol Chem 282:8860–8872

    Article  PubMed  CAS  Google Scholar 

  21. Liu Y, Fiskum G, Schubert D (2002) Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem 80:780–787

    Article  PubMed  CAS  Google Scholar 

  22. Ly JD, Grubb DR, Lawen A (2003) The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update. Apoptosis 8:115–128

    Article  PubMed  CAS  Google Scholar 

  23. Suen D-F, Norris KL, Youle RJ (2008) Mitochondrial dynamics and apoptosis. Genes Dev 22:1577–1590

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Martin-Aragon S, de las Heras B, Sanchez-Reus MI, Benedi J (2001) Pharmacological modification of endogenous antioxidant enzymes by ursolic acid on tetrachloride-induced liver damage in rats and primary cultures of rat hepatocytes. Exp Toxicol Pathol 53(2–3):199–206

    Article  PubMed  CAS  Google Scholar 

  25. Liu J (1995) Pharmacology of oleanolic acid and ursolic acid. J Ethnopharmacol 49(2):57–68

    Article  PubMed  CAS  Google Scholar 

  26. Ramachandran S, Prasad NR (2008) Effect of ursolic acid, a triterpenoid antioxidant, on ultraviolet-B radiation-induced cytotoxicity, lipid peroxidation and DNA damage in human lymphocytes. Chem Biol Interact 176(2–3):99–107

    Article  PubMed  CAS  Google Scholar 

  27. Liobikas J, Majiene D, Trumbeckaite S, Kursvietiene L, Masteikova R, Kopustinskiene DM, Savickas A, Bernatoniene J (2011) Uncoupling and antioxidant effects of ursolic acid in isolated rat heart mitochondria. J Nat Prod 74(7):1640–1644

    Article  PubMed  CAS  Google Scholar 

  28. Bayer M, Proksch P, Felsner I, Brenden H, Kohne Z, Walli R, Duong TN, Götz C, Krutmann J, Grether-Beck S (2011) Photoprotection against UVAR: effective triterpenoids require a lipid raft stabilizing chemical structure. Exp Dermatol 20(11):955–958

    Article  PubMed  CAS  Google Scholar 

  29. Chen K-C, Chang H-H, Ko W-S, Wu C-L, Chiu W-T, Hsieh C-L, Peng RY (2009) UV-induced damages eliminated by arbutin and ursolic acid in cell model of human dermal fibroblast WS-1 cells. Egypt Dermatol J 5(1):1–15

    Google Scholar 

  30. Soo Lee Y, Jin DQ, Beak SM, Lee ES, Kim JA (2003) Inhibition of ultraviolet-A-modulated signaling pathways by asiatic acid and ursolic acid in HaCaT human keratinocytes. Eur J Pharmacol 476(3):173–178

    Article  PubMed  Google Scholar 

  31. Rotolo J, Stancevic B, Zhang J, Hua G, Fuller J, Yin X, Haimovitz-Friedman A, Kim K, Qian M, Cardό-Vila M, Fuks Z, Pasqualini R, Arap W, Kolesnick R (2012) Anti-ceramide antibody prevents the radiation gastrointestinal syndrome in mice. J Clin Invest 122(5):1786–1790

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Wilkinson K, Boyd JD, Glicksman M, Moore KJ, El Khoury J (2011) A high content drug screen identifies ursolic acid as an inhibitor of amyloid beta protein interactions with its receptor CD36. J Biol Chem 286(40):34914–34922

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Handberg A, Lopez-Bermejo A, Bassols J, Vendrell J, Ricart W, Fernandez-Real JM (2009) Circulating soluble CD36 is associated with glucose metabolism and interleukin-6 in glucose-intolerant men. Diab Vasc Dis Res 6(1):15–20

    Article  PubMed  Google Scholar 

  34. Wang L, Wang GL, Liu JH, Li D, Zhu DZ, Wu LN (2012) Effects of ursolic acid in ameliorating insulin resistance in liver of KKAy mice via peroxisome proliferator-activated receptors α and γ. Zhong Xi Yi Jie He Xue Bao 10(7):793–799

    Article  PubMed  CAS  Google Scholar 

  35. Jung SH, Ha YJ, Shim EK, Choi SY, Jin JL, Yun-Choi HS, Lee JR (2007) Insulin-mimetic and insulin-sensitizing activities of a pentacyclic triterpenoid insulin receptor activator. Biochem J 403:243–250

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Derdak Z, Lang CH, Villegas KA, Tong M, Mark NM, de la Monte SM, Wands JR (2011) Activation of p53 enhances apoptosis and insulin resistance in a rat model of alcoholic liver disease. J Hepatol 54:164–172

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, Birnbaum MJ, Thompson CB (2005) AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 18:283–293

    Article  PubMed  CAS  Google Scholar 

  38. Samovski D, Su X, Xu Y, Abumrad NA, Stahl PD (2012) Insulin and AMPK regulate FA translocase/CD36 plasma membrane recruitment in cardiomyocytes via Rab GAP AS160 and Rab8a Rab GTPase. J Lipid Res 53:709–717

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Chen W, Jiang T, Wang H, Tao S, Lau A, Fang D, Zhang DD (2012) Does Nrf2 contribute to p53-mediated control of cell survival and death? Antioxid Redox Signal 17:1670–1675

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Liu W, Tan X, Shu L, Sun H, Song J, Jin P, Yu S, Sun M, Jia X (2012) Ursolic acid inhibits cigarette smoke extract-induced human bronchial epithelial cell injury and prevents development of lung cancer. Molecules 17:9104–9115

    Article  PubMed  CAS  Google Scholar 

  41. Ditch S, Paull TT (2012) The ATM protein kinase and cellular redox signaling: beyond the DNA damage response. Trends Biochem Sci 37:15–22

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Neary CL, Pastorino JG (2013) Akt inhibition promotes hexokinase 2 redistribution and glucose uptake in cancer cells. J Cell Physiol. doi:10.1002/jcp.24361

    PubMed  Google Scholar 

  43. Yu YX, Gu ZL, Yin JL, Chou WH, Kwok CY, Qin ZH, Liang ZQ (2010) Ursolic acid induces human hepatoma cell line SMMC-7721 apoptosis via p53-dependent pathway. Chin Med J (Engl) 123(14):1915–1923

    CAS  Google Scholar 

  44. Manu KA, Kuttan G (2008) Ursolic acid induces apoptosis by activating p53 and caspase-3 gene expressions and suppressing NF-κB mediated activation of bcl-2 in B16F-10 melanoma cells. Int Immunopharmacol 8(7):974–981

    Article  PubMed  CAS  Google Scholar 

  45. Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, Gottlieb E, Vousden KH (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126(1):107–120

    Article  PubMed  CAS  Google Scholar 

  46. Salminen A, Kaarniranta K (2010) Glycolysis links p53 function with NF-κB signaling: impact on cancer and aging process. J Cell Physiol 224(1):1–6

    Article  PubMed  CAS  Google Scholar 

  47. Kunkel SD, Elmore CJ, Bongers KS, Ebert SM, Fox DK, Dyle MC, Bullard SA, Adams CM (2012) Ursolic acid increases skeletal muscle and brown fat and decreases diet-induced obesity, glucose intolerance and fatty liver disease. PLoS ONE 7(6):e39332. doi:10.1371/journal.pone.0039332

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Jia Y, Bhuiyan MJ, Jun HJ, Lee JH, Hoang MH, Lee HJ, Kim N, Lee D, Hwang KY, Hwang BY, Choi DW, Lee SJ (2011) Ursolic acid is a PPAR-α agonist that regulates hepatic lipid metabolism. Bioorg Med Chem Lett 21(19):5876–5880. doi:10.1016/j.bmcl

    Article  PubMed  CAS  Google Scholar 

  49. Carkeet C, Grann K, Randolph RK, Venzon DS, Izzy SM (2012) Phytochemicals: health promotion and therapeutic potential. CRC Press, Florida, pp 120–128

    Book  Google Scholar 

  50. Cao C, Lu S, Kivlin R, Wallin B, Card E, Bagdasarian A, Tamakloe T, Chu WM, Guan KL, Wan Y (2008) AMP-activated protein kinase contributes to UV- and H2O2-induced apoptosis in human skin keratinocytes. J Biol Chem 283(43):28897–28908

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, Birnbaum MJ, Thompson CB (2005) AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 18(3):283–293

    Article  PubMed  CAS  Google Scholar 

  52. Zheng Q-Y, Jin F-S, Yao C, Zhang T, Zhang G-H, Ai X (2012) Ursolic acid-induced AMP-activated protein kinase (AMPK) activation contributes to growth inhibition and apoptosis in human bladder cancer T24 cells. Biochem Biophys Res Commun 419:741–747

    Article  PubMed  CAS  Google Scholar 

  53. Priebe A, Tan L, Wahl H, Kueck A, He G, Kwok R, Opipari A, Liu JR (2011) Glucose deprivation activates AMPK and induces cell death through modulation of Akt in ovarian cancer cells. Gynecol Oncol 122(2):389–395

    Article  PubMed  CAS  Google Scholar 

  54. Yeh CT, Wu CH, Yen GC (2010) Ursolic acid, a naturally occurring triterpenoid, suppresses migration and invasion of human breast cancer cells by modulating c-Jun N-terminal kinase, Akt and mammalian target of rapamycin signaling. Mol Nutr Food Res 54:1285–1295

    Article  PubMed  CAS  Google Scholar 

  55. Lu J, Wu DM, Zheng YL, Hu B, Cheng W, Zhang ZF, Shan Q (2011) Ursolic acid improves high fat diet-induced cognitive impairments by blocking endoplasmic reticulum stress and IκB kinase β/nuclear factor-κB-mediated inflammatory pathways in mice. Brain Behav Immun 25:1658–1667

    Article  PubMed  CAS  Google Scholar 

  56. Lee Y-H, Kumar N, Glickman RD (2012) Modulation of photochemical damage in normal and malignant cells by naturally occurring compounds. Photochem Photobiol 88:1385–1395

    Article  PubMed  CAS  Google Scholar 

  57. Tang C, Lu YH, Xie JH, Wang F, Zou JN, Yang JS, Xing YY, Xi T (2009) Downregulation of survivin and activation of caspase-3 through the PI3 K/Akt pathway in ursolic acid-induced HepG2 cell apoptosis. Anticancer Drugs 20:249–258

    Article  PubMed  CAS  Google Scholar 

  58. Lee C-H (2011) Glucose starvation induces apoptosis of Tsc-/-cells in a P53-dependent manner. ProQuest, UMI, Dissertation publishing, Michigan

  59. Natarajan M, Nayak BK, Galindo C, Mathur SP, Roldan FN, Meltz ML (2006) Nuclear translocation and DNA-binding activity of NF-κB after exposure of human monocytes to pulsed ultra-wideband electromagnetic fields (1 kV/cm) fails to transactivate kappaB-dependent gene expression. Radiat Res 165:645–654

    Article  PubMed  CAS  Google Scholar 

  60. Tessem M-B, Bathen TF, Čejková J, Midelfart A (2005) Effect of UVA and UVB irradiation on the metabolic profile of aqueous humor in rabbits analyzed by 1H NMR spectroscopy. Invest Ophthalmol Vis Sci 46:776–781

    Article  PubMed  Google Scholar 

  61. Lattimore MR Jr (1989) Effect of ultraviolet radiation on the energy metabolism of the corneal epithelium of the rabbit. Photochem Photobiol 49:175–180

    Article  PubMed  CAS  Google Scholar 

  62. Halse R, Bonavaud SM, Armstrong JL, McCormack JG, Yeaman SJ (2001) Control of glycogen synthesis by glucose, glycogen, and insulin in cultured human muscle cells. Diabetes 50:720–726

    Article  PubMed  CAS  Google Scholar 

  63. Tsirigotis DT (2011) Insulin-stimulated phosphate transport and ATP synthesis in skeletal muscle. ProQuest, UMI, Dissertation publishing, Michigan

  64. Weng L-P, Smith WM, Brown JL, Eng C (2001) PTEN inhibits insulin-stimulated MEK/MAPK activation and cell growth by blocking IRS-1 phosphorylation and IRS-1/Grb-2/Sos complex formation in a breast cancer model. Hum Mol Genet 10:605–616

    Article  PubMed  CAS  Google Scholar 

  65. Vander Heiden MG, Locasale JW, Swanson KD, Sharfi H, Heffron GJ, Amador-Noguez D, Christofk HR, Wagner G, Rabinowitz JD, Asara JM, Cantley LC (2010) Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science 329:1492–1499

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Julio C. Palmaz Pilot Research Grant, the National Science Foundation Partnerships for Research and Education in Materials (NSF-PREM), Grant No. DMR-0934218 in collaboration with Northwestern University MRSEC, and a CTRC Oppenheimer Multi-Investigator Research Grant. Data generated in the Flow Cytometry Shared Resource Facility was supported by UTHSCSA, NIH-NCI P30 CA54174 (CTRC at UTHSCSA) and UL1RR025767 (CTSA Grant). We thank the faculty members in the Departments of Ophthalmology and Radiology of the UT Health Science Center for their assistance and advice. Fluorescence images were generated in the Core Optical Imaging Facility which is supported by the UTHSCSA and NIH-NCI P30 CA54174 (CTRC at UTHSCSA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randolph D. Glickman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, YH., Wang, E., Kumar, N. et al. Ursolic acid differentially modulates apoptosis in skin melanoma and retinal pigment epithelial cells exposed to UV–VIS broadband radiation. Apoptosis 19, 816–828 (2014). https://doi.org/10.1007/s10495-013-0962-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0962-z

Keywords

Navigation