Skip to main content
Log in

Role of DAPK in neuronal cell death

  • The Universe of DAPK
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Neuronal cell death happens as a result of the normal physiological process that occurs during development, or as part of the pathological process that occurs during disease. Death-associated protein kinase (DAPK) is an intracellular protein that mediates cell death by its serine/threonine kinase activity, and transmits apoptotic cell death signals in various cells, including neurons. DAPK is elevated in injured neurons in acute models of injury such as ischemia and seizure. The absence of DAPK has been shown to protect neurons from a wide variety of acute toxic insults. Moreover, DAPK also regulates neuronal cell death during central nervous system development. Neurons are initially overproduced in the developing nervous system, following which approximately one-half of the original cell population dies. This “naturally-occurring” or “programmed” cell death is essential for the construction of the developing nervous system. In this review, we focus on the role of DAPK in neuronal cell death after neuronal injury. The participation of DAPK in developmental neuronal death is also explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Buss RR, Sun W, Oppenheim RW (2006) Adaptive roles of programmed cell death during nervous system development. Annu Rev Neurosci 29:1–35. doi:10.1146/annurev.neuro.29.051605.112800

    Article  CAS  PubMed  Google Scholar 

  2. Burek MJ, Oppenheim RW (1996) Programmed cell death in the developing nervous system. Brain Pathol 6(4):427–446

    Article  CAS  PubMed  Google Scholar 

  3. Mehlen P, Bredesen DE (2004) The dependence receptor hypothesis. Apoptosis 9(1):37–49. doi:10.1023/B:APPT.0000012120.66221.b2

    Article  CAS  PubMed  Google Scholar 

  4. Llambi F, Lourenco FC, Gozuacik D, Guix C, Pays L, Del Rio G, Kimchi A, Mehlen P (2005) The dependence receptor UNC5H2 mediates apoptosis through DAP-kinase. EMBO J 24(6):1192–1201. doi:10.1038/sj.emboj.7600584

    Article  CAS  PubMed  Google Scholar 

  5. Fujita Y, Taniguchi J, Uchikawa M, Endo M, Hata K, Kubo T, Mueller BK, Yamashita T (2008) Neogenin regulates neuronal survival through DAP kinase. Cell Death Differ 15(10):1593–1608. doi:10.1038/cdd.2008.92

    Article  CAS  PubMed  Google Scholar 

  6. Bialik S, Kimchi A (2006) The death-associated protein kinases: structure, function, and beyond. Annu Rev Biochem 75:189–210. doi:10.1146/annurev.biochem.75.103004.142615

    Article  CAS  PubMed  Google Scholar 

  7. Deiss LP, Feinstein E, Berissi H, Cohen O, Kimchi A (1995) Identification of a novel serine/threonine kinase and a novel 15-kD protein as potential mediators of the gamma interferon-induced cell death. Genes Dev 9(1):15–30

    Article  CAS  PubMed  Google Scholar 

  8. Cohen O, Inbal B, Kissil JL, Raveh T, Berissi H, Spivak-Kroizaman T, Feinstein E, Kimchi A (1999) DAP-kinase participates in TNF-alpha- and Fas-induced apoptosis and its function requires the death domain. J Cell Biol 146(1):141–148

    Article  CAS  PubMed  Google Scholar 

  9. Cohen O, Feinstein E, Kimchi A (1997) DAP-kinase is a Ca2 +/calmodulin-dependent, cytoskeletal-associated protein kinase, with cell death-inducing functions that depend on its catalytic activity. EMBO J 16(5):998–1008. doi:10.1093/emboj/16.5.998

    Article  CAS  PubMed  Google Scholar 

  10. Shohat G, Spivak-Kroizman T, Cohen O, Bialik S, Shani G, Berrisi H, Eisenstein M, Kimchi A (2001) The pro-apoptotic function of death-associated protein kinase is controlled by a unique inhibitory autophosphorylation-based mechanism. J Biol Chem 276(50):47460–47467. doi:10.1074/jbc.M105133200

    Article  CAS  PubMed  Google Scholar 

  11. Jin Y, Gallagher PJ (2003) Antisense depletion of death-associated protein kinase promotes apoptosis. J Biol Chem 278(51):51587–51593. doi:10.1074/jbc.M309165200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Raveh T, Droguett G, Horwitz MS, DePinho RA, Kimchi A (2001) DAP kinase activates a p19ARF/p53-mediated apoptotic checkpoint to suppress oncogenic transformation. Nat Cell Biol 3(1):1–7. doi:10.1038/35050500

    Article  CAS  PubMed  Google Scholar 

  13. Zalckvar E, Berissi H, Eisenstein M, Kimchi A (2009) Phosphorylation of Beclin 1 by DAP-kinase promotes autophagy by weakening its interactions with Bcl-2 and Bcl-XL. Autophagy 5(5):720–722

    Article  CAS  PubMed  Google Scholar 

  14. Bialik S, Kimchi A (2010) Lethal weapons: DAP-kinase, autophagy and cell death: DAP-kinase regulates autophagy. Curr Opin Cell Biol 22(2):199–205. doi:10.1016/j.ceb.2009.11.004

    Article  CAS  PubMed  Google Scholar 

  15. Schumacher AM, Velentza AV, Watterson DM, Wainwright MS (2002) DAPK catalytic activity in the hippocampus increases during the recovery phase in an animal model of brain hypoxic-ischemic injury. Biochim Biophys Acta 1600(1–2):128–137

    Article  CAS  PubMed  Google Scholar 

  16. Shamloo M, Soriano L, Wieloch T, Nikolich K, Urfer R, Oksenberg D (2005) Death-associated protein kinase is activated by dephosphorylation in response to cerebral ischemia. J Biol Chem 280(51):42290–42299. doi:10.1074/jbc.M505804200

    Article  CAS  PubMed  Google Scholar 

  17. Velentza AV, Wainwright MS, Zasadzki M, Mirzoeva S, Schumacher AM, Haiech J, Focia PJ, Egli M, Watterson DM (2003) An aminopyridazine-based inhibitor of a pro-apoptotic protein kinase attenuates hypoxia-ischemia induced acute brain injury. Bioorg Med Chem Lett 13(20):3465–3470

    Article  CAS  PubMed  Google Scholar 

  18. Yamamoto M, Takahashi H, Nakamura T, Hioki T, Nagayama S, Ooashi N, Sun X, Ishii T, Kudo Y, Nakajima-Iijima S, Kimchi A, Uchino S (1999) Developmental changes in distribution of death-associated protein kinase mRNAs. J Neurosci Res 58(5):674–683

    Article  CAS  PubMed  Google Scholar 

  19. Sakagami H, Kondo H (1997) Molecular cloning and developmental expression of a rat homologue of death-associated protein kinase in the nervous system. Brain Res Mol Brain Res 52(2):249–256

    Article  CAS  PubMed  Google Scholar 

  20. Gozuacik D, Bialik S, Raveh T, Mitou G, Shohat G, Sabanay H, Mizushima N, Yoshimori T, Kimchi A (2008) DAP-kinase is a mediator of endoplasmic reticulum stress-induced caspase activation and autophagic cell death. Cell Death Differ 15(12):1875–1886. doi:10.1038/cdd.2008.121

    Article  CAS  PubMed  Google Scholar 

  21. Raff MC, Barres BA, Burne JF, Coles HS, Ishizaki Y, Jacobson MD (1993) Programmed cell death and the control of cell survival: lessons from the nervous system. Science 262(5134):695–700

    Article  CAS  PubMed  Google Scholar 

  22. Stefanis L, Burke RE, Greene LA (1997) Apoptosis in neurodegenerative disorders. Curr Opin Neurol 10(4):299–305

    Article  CAS  PubMed  Google Scholar 

  23. Friedlander RM, Yuan J (1998) ICE, neuronal apoptosis and neurodegeneration. Cell Death Differ 5(10):823–831

    Article  CAS  PubMed  Google Scholar 

  24. Tatton WG, Olanow CW (1999) Apoptosis in neurodegenerative diseases: the role of mitochondria. Biochim Biophys Acta 1410(2):195–213

    Article  CAS  PubMed  Google Scholar 

  25. Henshall DC, Araki T, Schindler CK, Shinoda S, Lan JQ, Simon RP (2003) Expression of death-associated protein kinase and recruitment to the tumor necrosis factor signaling pathway following brief seizures. J Neurochem 86(5):1260–1270

    Article  CAS  PubMed  Google Scholar 

  26. Araki T, Shinoda S, Schindler CK, Quan-Lan J, Meller R, Taki W, Simon RP, Henshall DC (2004) Expression, interaction, and proteolysis of death-associated protein kinase and p53 within vulnerable and resistant hippocampal subfields following seizures. Hippocampus 14(3):326–336. doi:10.1002/hipo.10184

    Article  CAS  PubMed  Google Scholar 

  27. Cheung YT, Zhang NQ, Hung CH, Lai CS, Yu MS, So KF, Chang RC (2011) Temporal relationship of autophagy and apoptosis in neurons challenged by low molecular weight beta-amyloid peptide. J Cell Mol Med 15(2):244–257. doi:10.1111/j.1582-4934.2009.00990.x

    Article  CAS  PubMed  Google Scholar 

  28. Schori H, Yoles E, Wheeler LA, Raveh T, Kimchi A, Schwartz M (2002) Immune-related mechanisms participating in resistance and susceptibility to glutamate toxicity. Eur J Neurosci 16(4):557–564

    Article  PubMed  Google Scholar 

  29. Tu W, Xu X, Peng L, Zhong X, Zhang W, Soundarapandian MM, Balel C, Wang M, Jia N, Zhang W, Lew F, Chan SL, Chen Y, Lu Y (2010) DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. Cell 140(2):222–234. doi:10.1016/j.cell.2009.12.055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Liu SB, Zhang N, Guo YY, Zhao R, Shi TY, Feng SF, Wang SQ, Yang Q, Li XQ, Wu YM, Ma L, Hou Y, Xiong LZ, Zhang W, Zhao MG (2012) G-protein-coupled receptor 30 mediates rapid neuroprotective effects of estrogen via depression of NR2B-containing NMDA receptors. J Neurosci 32(14):4887–4900. doi:10.1523/JNEUROSCI.5828-11.2012

    Article  CAS  PubMed  Google Scholar 

  31. Mitoma J, Ito M, Furuya S, Hirabayashi Y (1998) Bipotential roles of ceramide in the growth of hippocampal neurons: promotion of cell survival and dendritic outgrowth in dose- and developmental stage-dependent manners. J Neurosci Res 51(6):712–722

    Article  CAS  PubMed  Google Scholar 

  32. Pelled D, Raveh T, Riebeling C, Fridkin M, Berissi H, Futerman AH, Kimchi A (2002) Death-associated protein (DAP) kinase plays a central role in ceramide-induced apoptosis in cultured hippocampal neurons. J Biol Chem 277(3):1957–1961. doi:10.1074/jbc.M104677200

    Article  CAS  PubMed  Google Scholar 

  33. Yukawa K, Tanaka T, Bai T, Li L, Tsubota Y, Owada-Makabe K, Maeda M, Hoshino K, Akira S, Iso H (2006) Deletion of the kinase domain from death-associated protein kinase enhances spatial memory in mice. Int J Mol Med 17(5):869–873

    CAS  PubMed  Google Scholar 

  34. Li Y, Grupe A, Rowland C, Nowotny P, Kauwe JS, Smemo S, Hinrichs A, Tacey K, Toombs TA, Kwok S, Catanese J, White TJ, Maxwell TJ, Hollingworth P, Abraham R, Rubinsztein DC, Brayne C, Vrieze F Wavrant-De, Hardy J, O’Donovan M, Lovestone S, Morris JC, Thal LJ, Owen M, Williams J, Goate A (2006) DAPK1 variants are associated with Alzheimer’s disease and allele-specific expression. Hum Mol Genet 15(17):2560–2568. doi:10.1093/hmg/ddl178

    Article  CAS  PubMed  Google Scholar 

  35. Augustinack JC, Schneider A, Mandelkow EM, Hyman BT (2002) Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathol 103(1):26–35

    Article  CAS  PubMed  Google Scholar 

  36. Perez M, Ribe E, Rubio A, Lim F, Moran MA, Ramos PG, Ferrer I, Isla MT, Avila J (2005) Characterization of a double (amyloid precursor protein-tau) transgenic: tau phosphorylation and aggregation. Neuroscience 130(2):339–347. doi:10.1016/j.neuroscience.2004.09.029

    Article  CAS  PubMed  Google Scholar 

  37. Chin JY, Knowles RB, Schneider A, Drewes G, Mandelkow EM, Hyman BT (2000) Microtubule-affinity regulating kinase (MARK) is tightly associated with neurofibrillary tangles in Alzheimer brain: a fluorescence resonance energy transfer study. J Neuropathol Exp Neurol 59(11):966–971

    CAS  PubMed  Google Scholar 

  38. Wu PR, Tsai PI, Chen GC, Chou HJ, Huang YP, Chen YH, Lin MY, Kimchi A, Chien CT, Chen RH (2011) DAPK activates MARK1/2 to regulate microtubule assembly, neuronal differentiation, and tau toxicity. Cell Death Differ 18(9):1507–1520. doi:10.1038/cdd.2011.2

    Article  CAS  PubMed  Google Scholar 

  39. Oppenheim RW (1991) Cell death during development of the nervous system. Annu Rev Neurosci 14:453–501. doi:10.1146/annurev.ne.14.030191.002321

    Article  CAS  PubMed  Google Scholar 

  40. Raff MC (1992) Social controls on cell survival and cell death. Nature 356(6368):397–400. doi:10.1038/356397a0

    Article  CAS  PubMed  Google Scholar 

  41. Yuan J, Yankner BA (2000) Apoptosis in the nervous system. Nature 407(6805):802–809. doi:10.1038/35037739

    Article  CAS  PubMed  Google Scholar 

  42. Bibel M, Barde YA (2000) Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev 14(23):2919–2937

    Article  CAS  PubMed  Google Scholar 

  43. Brunet A, Datta SR, Greenberg ME (2001) Transcription-dependent and -independent control of neuronal survival by the PI3 K-Akt signaling pathway. Curr Opin Neurobiol 11(3):297–305

    Article  CAS  PubMed  Google Scholar 

  44. Mehlen P, Fearon ER (2004) Role of the dependence receptor DCC in colorectal cancer pathogenesis. J Clin Oncol 22(16):3420–3428. doi:10.1200/JCO.2004.02.019

    Article  CAS  PubMed  Google Scholar 

  45. Rabizadeh S, Oh J, Zhong LT, Yang J, Bitler CM, Butcher LL, Bredesen DE (1993) Induction of apoptosis by the low-affinity NGF receptor. Science 261(5119):345–348

    Article  CAS  PubMed  Google Scholar 

  46. Mehlen P, Rabizadeh S, Snipas SJ, Assa-Munt N, Salvesen GS, Bredesen DE (1998) The DCC gene product induces apoptosis by a mechanism requiring receptor proteolysis. Nature 395(6704):801–804. doi:10.1038/27441

    Article  CAS  PubMed  Google Scholar 

  47. Llambi F, Causeret F, Bloch-Gallego E, Mehlen P (2001) Netrin-1 acts as a survival factor via its receptors UNC5H and DCC. EMBO J 20(11):2715–2722. doi:10.1093/emboj/20.11.2715

    Article  CAS  PubMed  Google Scholar 

  48. Bordeaux MC, Forcet C, Granger L, Corset V, Bidaud C, Billaud M, Bredesen DE, Edery P, Mehlen P (2000) The RET proto-oncogene induces apoptosis: a novel mechanism for Hirschsprung disease. EMBO J 19(15):4056–4063. doi:10.1093/emboj/19.15.4056

    Article  CAS  PubMed  Google Scholar 

  49. Ellerby LM, Hackam AS, Propp SS, Ellerby HM, Rabizadeh S, Cashman NR, Trifiro MA, Pinsky L, Wellington CL, Salvesen GS, Hayden MR, Bredesen DE (1999) Kennedy’s disease: caspase cleavage of the androgen receptor is a crucial event in cytotoxicity. J Neurochem 72(1):185–195

    Article  CAS  PubMed  Google Scholar 

  50. Ruoslahti E, Reed JC (1994) Anchorage dependence, integrins, and apoptosis. Cell 77(4):477–478

    Article  CAS  PubMed  Google Scholar 

  51. Stupack DG, Puente XS, Boutsaboualoy S, Storgard CM, Cheresh DA (2001) Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J Cell Biol 155(3):459–470. doi:10.1083/jcb.200106070

    Article  CAS  PubMed  Google Scholar 

  52. Thibert C, Teillet MA, Lapointe F, Mazelin L, Le Douarin NM, Mehlen P (2003) Inhibition of neuroepithelial patched-induced apoptosis by sonic hedgehog. Science 301(5634):843–846. doi:10.1126/science.1085405

    Article  CAS  PubMed  Google Scholar 

  53. Baloh RH, Enomoto H, Johnson EM Jr, Milbrandt J (2000) The GDNF family ligands and receptors - implications for neural development. Curr Opin Neurobiol 10(1):103–110

    Article  CAS  PubMed  Google Scholar 

  54. Dechant G, Barde YA (1997) Signalling through the neurotrophin receptor p75NTR. Curr Opin Neurobiol 7(3):413–418

    Article  CAS  PubMed  Google Scholar 

  55. Livesey FJ (1999) Netrins and netrin receptors. Cell Mol Life Sci 56(1–2):62–68

    Article  CAS  PubMed  Google Scholar 

  56. Ruiz i, Altaba A, Palma V, Dahmane N (2002) Hedgehog-Gli signalling and the growth of the brain. Nat Rev Neurosci 3(1):24–33. doi:10.1038/nrn704

    Article  Google Scholar 

  57. Ackerman SL, Kozak LP, Przyborski SA, Rund LA, Boyer BB, Knowles BB (1997) The mouse rostral cerebellar malformation gene encodes an UNC-5-like protein. Nature 386(6627):838–842. doi:10.1038/386838a0

    Article  CAS  PubMed  Google Scholar 

  58. Leonardo ED, Hinck L, Masu M, Keino-Masu K, Ackerman SL, Tessier-Lavigne M (1997) Vertebrate homologues of C. elegans UNC-5 are candidate netrin receptors. Nature 386(6627):833–838. doi:10.1038/386833a0

    Article  CAS  PubMed  Google Scholar 

  59. Hong K, Hinck L, Nishiyama M, Poo MM, Tessier-Lavigne M, Stein E (1999) A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell 97(7):927–941

    Article  CAS  PubMed  Google Scholar 

  60. Vielmetter J, Kayyem JF, Roman JM, Dreyer WJ (1994) Neogenin, an avian cell surface protein expressed during terminal neuronal differentiation, is closely related to the human tumor suppressor molecule deleted in colorectal cancer. J Cell Biol 127(6 Pt 2):2009–2020

    Article  CAS  PubMed  Google Scholar 

  61. Wilson NH, Key B (2006) Neogenin interacts with RGMa and netrin-1 to guide axons within the embryonic vertebrate forebrain. Dev Biol 296(2):485–498. doi:10.1016/j.ydbio.2006.06.018

    Article  CAS  PubMed  Google Scholar 

  62. Matsunaga E, Nakamura H, Chedotal A (2006) Repulsive guidance molecule plays multiple roles in neuronal differentiation and axon guidance. J Neurosci 26(22):6082–6088. doi:10.1523/JNEUROSCI.4556-05.2006

    Article  CAS  PubMed  Google Scholar 

  63. Fitzgerald DP, Cole SJ, Hammond A, Seaman C, Cooper HM (2006) Characterization of neogenin-expressing neural progenitor populations and migrating neuroblasts in the embryonic mouse forebrain. Neuroscience 142(3):703–716. doi:10.1016/j.neuroscience.2006.06.041

    Article  CAS  PubMed  Google Scholar 

  64. Matsunaga E, Tauszig-Delamasure S, Monnier PP, Mueller BK, Strittmatter SM, Mehlen P, Chedotal A (2004) RGM and its receptor neogenin regulate neuronal survival. Nat Cell Biol 6(8):749–755. doi:10.1038/ncb1157

    Article  CAS  PubMed  Google Scholar 

  65. Keino-Masu K, Masu M, Hinck L, Leonardo ED, Chan SS, Culotti JG, Tessier-Lavigne M (1996) Deleted in Colorectal Cancer (DCC) encodes a netrin receptor. Cell 87(2):175–185

    Article  CAS  PubMed  Google Scholar 

  66. De Vries M, Cooper HM (2008) Emerging roles for neogenin and its ligands in CNS development. J Neurochem 106(4):1483–1492. doi:10.1111/j.1471-4159.2008.05485.x

    Article  PubMed  Google Scholar 

  67. Mueller BK, Yamashita T, Schaffar G, Mueller R (2006) The role of repulsive guidance molecules in the embryonic and adult vertebrate central nervous system. Philos Trans R Soc Lond B Biol Sci 361(1473):1513–1529. doi:10.1098/rstb 2006.1888

    Article  CAS  PubMed  Google Scholar 

  68. Finger JH, Bronson RT, Harris B, Johnson K, Przyborski SA, Ackerman SL (2002) The netrin 1 receptors Unc5h3 and Dcc are necessary at multiple choice points for the guidance of corticospinal tract axons. J Neurosci 22(23):10346–10356

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant for Core Research for Evolutional Science and Technology (CREST) from the Japan Science and Technology Agency (JST) to T.Y.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihide Yamashita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujita, Y., Yamashita, T. Role of DAPK in neuronal cell death. Apoptosis 19, 339–345 (2014). https://doi.org/10.1007/s10495-013-0917-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0917-4

Keywords

Navigation