Apoptosis

, Volume 18, Issue 10, pp 1163–1174 | Cite as

Gamma-secretase inhibition attenuates oxaliplatin-induced apoptosis through increased Mcl-1 and/or Bcl-xL in human colon cancer cells

  • Cindy R. Timme
  • Mike Gruidl
  • Timothy J. Yeatman
Original Paper

Abstract

The Notch signaling pathway plays a significant role in differentiation, proliferation, apoptosis, and stem cell processes. It is essential for maintenance of the normal colon crypt and has been implicated in colorectal cancer oncogenesis. Downregulation of the Notch pathway through gamma-secretase inhibitors (GSIs) has been shown to induce apoptosis and enhance response to chemotherapy in a variety of malignancies. In this study, we analyzed the effect of MRK-003 (Merck), a potent inhibitor of gamma-secretase, on oxaliplatin-induced apoptosis in colon cancer. Unexpectedly, gamma-secretase inhibition reduced oxaliplatin-induced apoptosis while GSI treatment alone was shown to have no effect on growth or apoptosis. We determined that the underlying mechanism of action involved an increase in protein levels of the anti-apoptotic Bcl-2 family members Mcl-1 and/or Bcl-xL which resulted in reduced Bax and Bak activation. Blocking of Mcl-1 and/or Bcl-xL through siRNA or the small molecule inhibitor obatoclax restored the apoptotic potential of cells treated with both oxaliplatin and MRK-003. Moreover, obatoclax synergized with MRK-003 alone to induce apoptosis. Our findings warrant caution when treating colon cancer with the combination of GSIs and chemotherapy, whereas other drug combinations, such as GSIs plus obatoclax, should be explored.

Keywords

Gamma-secretase inhibitor Oxaliplatin Mcl-1 Bcl-xL Colon 

Supplementary material

10495_2013_883_MOESM1_ESM.pptx (58 kb)
Effects of Alternative GSIs on HCT-116 and SW480 Colon Cancer Cell Lines. HCT-116 and SW480 cells were treated with 15 μM (HCT-116) or 30 μM (SW480) oxaliplatin (Oxa) for 48 h in the absence or presence of 25 μM DAPT (A), 5 μM (HCT-116) or 10 μM (SW480) GSI-XII (B), or 2 μM GSI-XX (C). Apoptosis rates were measured by flow cytometry following active caspase-3 reactivity. Represented data are mean ± SEM of two independent experiments. Supplementary material 1 (PPTX 58 kb)
10495_2013_883_MOESM2_ESM.pptx (43 kb)
Effects of MRK-003 on Oxaliplatin-Induced Apoptosis in HT-29, HCT-15, and Colo205 Colon Cancer Cell Lines. HT-29, HCT-15, and Colo205 were treated with either 30 (HCT-15) or 50 μM (HT-29 and Colo205) Oxa in the absence or presence of 5 μM (HT-29) or 10 μM MRK-003 (HCT-15 and Colo205) for 48 h. Apoptosis rates were measured by flow cytometry following active caspase-3 reactivity. Represented data are mean ± SEM of at least two independent experiments. Supplementary material 2 (PPTX 43 kb)

References

  1. 1.
    Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. Cancer J Clin 62 (1):10–29. doi:10.3322/caac.20138
  2. 2.
    Saltz LB (2009) Looking ahead: what will change in colorectal cancer treatment? Gastrointest Cancer Res 3(2 Suppl):S16–S18PubMedGoogle Scholar
  3. 3.
    Garcia-Foncillas J, Diaz-Rubio E (2010) Progress in metastatic colorectal cancer: growing role of cetuximab to optimize clinical outcome. Clin Transl Oncol 12(8):533–542CrossRefPubMedGoogle Scholar
  4. 4.
    Schroeter EH, Kisslinger JA, Kopan R (1998) Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393(6683):382–386. doi:10.1038/30756 CrossRefPubMedGoogle Scholar
  5. 5.
    Jarriault S, Brou C, Logeat F, Schroeter EH, Kopan R, Israel A (1995) Signalling downstream of activated mammalian Notch. Nature 377(6547):355–358. doi:10.1038/377355a0 CrossRefPubMedGoogle Scholar
  6. 6.
    Borggrefe T, Oswald F (2009) The Notch signaling pathway: transcriptional regulation at Notch target genes. Cell Mol Life Sci 66(10):1631–1646. doi:10.1007/s00018-009-8668-7 CrossRefPubMedGoogle Scholar
  7. 7.
    Reedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR, Lockwood G, Egan SE (2005) High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res 65(18):8530–8537. doi:10.1158/0008-5472.CAN-05-1069 CrossRefPubMedGoogle Scholar
  8. 8.
    Stylianou S, Clarke RB, Brennan K (2006) Aberrant activation of notch signaling in human breast cancer. Cancer Res 66(3):1517–1525. doi:10.1158/0008-5472.CAN-05-3054 CrossRefPubMedGoogle Scholar
  9. 9.
    Bedogni B, Warneke JA, Nickoloff BJ, Giaccia AJ, Powell MB (2008) Notch1 is an effector of Akt and hypoxia in melanoma development. J Clin Invest 118(11):3660–3670. doi:10.1172/JCI36157 CrossRefPubMedGoogle Scholar
  10. 10.
    Wang M, Wang J, Wang L, Wu L, Xin X (2010) Notch1 expression correlates with tumor differentiation status in ovarian carcinoma. Med Oncol 27(4):1329–1335. doi:10.1007/s12032-009-9384-8 CrossRefPubMedGoogle Scholar
  11. 11.
    Santagata S, Demichelis F, Riva A, Varambally S, Hofer MD, Kutok JL, Kim R, Tang J, Montie JE, Chinnaiyan AM, Rubin MA, Aster JC (2004) JAGGED1 expression is associated with prostate cancer metastasis and recurrence. Cancer Res 64(19):6854–6857. doi:10.1158/0008-5472.can-04-2500 CrossRefPubMedGoogle Scholar
  12. 12.
    Wang Z, Li Y, Banerjee S, Kong D, Ahmad A, Nogueira V, Hay N, Sarkar FH (2010) Down-regulation of Notch-1 and Jagged-1 inhibits prostate cancer cell growth, migration and invasion, and induces apoptosis via inactivation of Akt, mTOR, and NF-κB signaling pathways. J Cell Biochem 109(4):726–736. doi:10.1002/jcb.22451 PubMedGoogle Scholar
  13. 13.
    Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD, Sklar J (1991) TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66(4):649–661CrossRefPubMedGoogle Scholar
  14. 14.
    Weng AP, Ferrando AA, Lee W, Morris JP, Silverman LB, Sanchez-Irizarry C, Blacklow SC, Look AT, Aster JC (2004) Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306(5694):269–271. doi:10.1126/science.1102160 CrossRefPubMedGoogle Scholar
  15. 15.
    Talora C, Sgroi DC, Crum CP, Dotto GP (2002) Specific down-modulation of Notch1 signaling in cervical cancer cells is required for sustained HPV-E6/E7 expression and late steps of malignant transformation. Genes Dev 16(17):2252–2263. doi:10.1101/gad.988902 CrossRefPubMedGoogle Scholar
  16. 16.
    Kunnimalaiyaan M, Chen H (2007) Tumor suppressor role of Notch-1 signaling in neuroendocrine tumors. Oncologist 12(5):535–542. doi:10.1634/theoncologist.12-5-535 CrossRefPubMedGoogle Scholar
  17. 17.
    Sriuranpong V, Borges MW, Ravi RK, Arnold DR, Nelkin BD, Baylin SB, Ball DW (2001) Notch signaling induces cell cycle arrest in small cell lung cancer cells. Cancer Res 61(7):3200–3205PubMedGoogle Scholar
  18. 18.
    Qi R, An H, Yu Y, Zhang M, Liu S, Xu H, Guo Z, Cheng T, Cao X (2003) Notch1 signaling inhibits growth of human hepatocellular carcinoma through induction of cell cycle arrest and apoptosis. Cancer Res 63(23):8323–8329PubMedGoogle Scholar
  19. 19.
    Lefort K, Mandinova A, Ostano P, Kolev V, Calpini V, Kolfschoten I, Devgan V, Lieb J, Raffoul W, Hohl D, Neel V, Garlick J, Chiorino G, Dotto GP (2007) Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKalpha kinases. Genes Dev 21(5):562–577. doi:10.1101/gad.1484707 CrossRefPubMedGoogle Scholar
  20. 20.
    McKee S (2010) Lilly hit by spectacular failure of phase III Alzheimer’s candidate. PharmaTimes. http://www.pharmatimes.com/Article/10-08-18/Lilly_hit_by_spectacular_failure_of_Phase_III_Alzheimer_s_candidate.aspx-.UA2YKRZFENo.link. Accessed May 2012
  21. 21.
    Li T, Wen H, Brayton C, Laird FM, Ma G, Peng S, Placanica L, Wu TC, Crain BJ, Price DL, Eberhart CG, Wong PC (2007) Moderate reduction of gamma-secretase attenuates amyloid burden and limits mechanism-based liabilities. J Neurosci 27(40):10849–10859. doi:10.1523/jneurosci.2152-07.2007 CrossRefPubMedGoogle Scholar
  22. 22.
    Leong KG, Karsan A (2006) Recent insights into the role of Notch signaling in tumorigenesis. Blood 107(6):2223–2233. doi:10.1182/blood-2005-08-3329 CrossRefPubMedGoogle Scholar
  23. 23.
    Ramakrishnan V, Ansell S, Haug J, Grote D, Kimlinger T, Stenson M, Timm M, Wellik L, Halling T, Rajkumar SV, Kumar S (2012) MRK003, a [gamma]-secretase inhibitor exhibits promising in vitro pre-clinical activity in multiple myeloma and non-Hodgkin’s lymphoma. Leukemia 26(2):340–348CrossRefPubMedGoogle Scholar
  24. 24.
    Lewis HD, Leveridge M, Strack PR, Haldon CD, O’Neil J, Kim H, Madin A, Hannam JC, Look AT, Kohl N, Draetta G, Harrison T, Kerby JA, Shearman MS, Beher D (2007) Apoptosis in T cell acute lymphoblastic leukemia cells after cell cycle arrest induced by pharmacological inhibition of notch signaling. Chem Biol 14(2):209–219. doi:10.1016/j.chembiol.2006.12.010 CrossRefPubMedGoogle Scholar
  25. 25.
    Grudzien P, Lo S, Albain KS, Robinson P, Rajan P, Strack PR, Golde TE, Miele L, Foreman KE (2010) Inhibition of Notch signaling reduces the stem-like population of breast cancer cells and prevents mammosphere formation. Anticancer Res 30(10):3853–3867PubMedGoogle Scholar
  26. 26.
    Plentz R, Park JS, Rhim AD, Abravanel D, Hezel AF, Sharma SV, Gurumurthy S, Deshpande V, Kenific C, Settleman J, Majumder PK, Stanger BZ, Bardeesy N (2009) Inhibition of gamma-secretase activity inhibits tumor progression in a mouse model of pancreatic ductal adenocarcinoma. Gastroenterology 136 (5):1741–1749.e1746Google Scholar
  27. 27.
    Vo K, Amarasinghe B, Washington K, Gonzalez A, Berlin J, Dang TP (2011) Targeting notch pathway enhances rapamycin antitumor activity in pancreas cancers through PTEN phosphorylation. Mol Cancer 10:138. doi:10.1186/1476-4598-10-138 CrossRefPubMedGoogle Scholar
  28. 28.
    Konishi J, Kawaguchi KS, Vo H, Haruki N, Gonzalez A, Carbone DP, Dang TP (2007) Gamma-secretase inhibitor prevents Notch3 activation and reduces proliferation in human lung cancers. Cancer Res 67(17):8051–8057. doi:10.1158/0008-5472.can-07-1022 CrossRefPubMedGoogle Scholar
  29. 29.
    Chen J, Kesari S, Rooney C, Strack PR, Chen J, Shen H, Wu L, Griffin JD (2010) Inhibition of Notch signaling blocks growth of glioblastoma cell lines and tumor neurospheres. Genes Cancer 1(8):822–835. doi:10.1177/1947601910383564 CrossRefPubMedGoogle Scholar
  30. 30.
    Riccio O, van Gijn ME, Bezdek AC, Pellegrinet L, van Es JH, Zimber-Strobl U, Strobl LJ, Honjo T, Clevers H, Radtke F (2008) Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2. EMBO Rep 9(4):377–383. doi:10.1038/embor.2008.7 CrossRefPubMedGoogle Scholar
  31. 31.
    Sander GR, Powell BC (2004) Expression of notch receptors and ligands in the adult gut. J Histochem Cytochem 52(4):509–516CrossRefPubMedGoogle Scholar
  32. 32.
    Fre S, Huyghe M, Mourikis P, Robine S, Louvard D, Artavanis-Tsakonas S (2005) Notch signals control the fate of immature progenitor cells in the intestine. Nature 435(7044):964–968. doi:10.1038/nature03589 CrossRefPubMedGoogle Scholar
  33. 33.
    van Es JH, van Gijn ME, Riccio O, van den Born M, Vooijs M, Begthel H, Cozijnsen M, Robine S, Winton DJ, Radtke F, Clevers H (2005) Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435(7044):959–963. doi:10.1038/nature03659 CrossRefPubMedGoogle Scholar
  34. 34.
    Radtke F, Clevers H (2005) Self-renewal and cancer of the gut: two sides of a coin. Science 307(5717):1904–1909. doi:10.1126/science.1104815 CrossRefPubMedGoogle Scholar
  35. 35.
    Reedijk M, Odorcic S, Zhang H, Chetty R, Tennert C, Dickson BC, Lockwood G, Gallinger S, Egan SE (2008) Activation of Notch signaling in human colon adenocarcinoma. Int J Oncol 33(6):1223–1229PubMedGoogle Scholar
  36. 36.
    Meng RD, Shelton CC, Li Y-M, Qin L-X, Notterman D, Paty PB, Schwartz GK (2009) γ-Secretase inhibitors abrogate oxaliplatin-induced activation of the Notch-1 signaling pathway in colon cancer cells resulting in enhanced chemosensitivity. Cancer Res 69(2):573–582. doi:10.1158/0008-5472.can-08-2088 CrossRefPubMedGoogle Scholar
  37. 37.
    Aleksic T, Feller S (2008) Gamma-secretase inhibition combined with platinum compounds enhances cell death in a large subset of colorectal cancer cells. Cell Commun Signal 6(1):8CrossRefPubMedGoogle Scholar
  38. 38.
    Akiyoshi T, Nakamura M, Yanai K, Nagai S, Wada J, Koga K, Nakashima H, Sato N, Tanaka M, Katano M (2008) Gamma-secretase inhibitors enhance taxane-induced mitotic arrest and apoptosis in colon cancer cells. Gastroenterology 134(1):131–144. doi:10.1053/j.gastro.2007.10.008 CrossRefPubMedGoogle Scholar
  39. 39.
    Tait SWG, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11(9):621–632CrossRefPubMedGoogle Scholar
  40. 40.
    Hsu Y-T, Youle RJ (1998) Bax in murine thymus is a soluble monomeric protein that displays differential detergent-induced conformations. J Biol Chem 273(17):10777–10783. doi:10.1074/jbc.273.17.10777 CrossRefPubMedGoogle Scholar
  41. 41.
    Brunelle JK, Letai A (2009) Control of mitochondrial apoptosis by the Bcl-2 family. J Cell Sci 122(4):437–441. doi:10.1242/jcs.031682 CrossRefPubMedGoogle Scholar
  42. 42.
    Wang J, Wakeman TP, Lathia JD, Hjelmeland AB, Wang XF, White RR, Rich JN, Sullenger BA (2010) Notch promotes radioresistance of glioma stem cells. Stem Cells 28(1):17–28. doi:10.1002/stem.261 PubMedGoogle Scholar
  43. 43.
    Zhao N, Guo Y, Zhang M, Lin L, Zheng Z (2010) Akt-mTOR signaling is involved in Notch-1-mediated glioma cell survival and proliferation. Oncol Rep 23(5):1443–1447PubMedGoogle Scholar
  44. 44.
    Nefedova Y, Sullivan DM, Bolick SC, Dalton WS, Gabrilovich DI (2008) Inhibition of Notch signaling induces apoptosis of myeloma cells and enhances sensitivity to chemotherapy. Blood 111(4):2220–2229. doi:10.1182/blood-2007-07-102632 CrossRefPubMedGoogle Scholar
  45. 45.
    Seveno C, Loussouarn D, Brechet S, Campone M, Juin P, Barille-Nion S (2012) Gamma-secretase inhibition promotes cell death, Noxa upregulation, and sensitization to BH3 mimetic ABT-737 in human breast cancer cells. Breast Cancer Res 14(3):R96. doi:10.1186/bcr3214 CrossRefPubMedGoogle Scholar
  46. 46.
    Liu S, Breit S, Danckwardt S, Muckenthaler MU, Kulozik AE (2009) Downregulation of Notch signaling by gamma-secretase inhibition can abrogate chemotherapy-induced apoptosis in T-ALL cell lines. Ann Hematol 88(7):613–621. doi:10.1007/s00277-008-0646-x CrossRefPubMedGoogle Scholar
  47. 47.
    Haapasalo A, Kovacs DM (2011) The many substrates of presenilin/γ-secretase. J Alzheimers Dis 25(1):3–28. doi:10.3233/jad-2011-101065 PubMedGoogle Scholar
  48. 48.
    Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O’Connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435(7042):677–681CrossRefPubMedGoogle Scholar
  49. 49.
    Li M, Chen F, Clifton N, Sullivan DM, Dalton WS, Gabrilovich DI, Nefedova Y (2010) Combined inhibition of Notch signaling and Bcl-2/Bcl-xL results in synergistic antimyeloma effect. Mol Cancer Ther 9(12):3200–3209. doi:10.1158/1535-7163.mct-10-0372 CrossRefPubMedGoogle Scholar
  50. 50.
    Strosberg JR, Yeatman T, Weber J, Coppola D, Schell MJ, Han G, Almhanna K, Kim R, Valone T, Jump H, Sullivan D (2012) A phase II study of RO4929097 in metastatic colorectal cancer. Eur J Cancer 48(7):997–1003. doi:10.1016/j.ejca.2012.02.056 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Cindy R. Timme
    • 1
    • 3
  • Mike Gruidl
    • 1
  • Timothy J. Yeatman
    • 2
  1. 1.Department of Experimental TherapeuticsMoffitt Cancer CenterTampaUSA
  2. 2.Gibbs Cancer CenterSpartanburgUSA
  3. 3.Cancer Biology Ph.D. Program, Department of Oncologic SciencesUniversity of South FloridaTampaUSA

Personalised recommendations