Skip to main content

Advertisement

Log in

Steroidal aromatase inhibitors inhibit growth of hormone-dependent breast cancer cells by inducing cell cycle arrest and apoptosis

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Different hormonal therapies are used for estrogen receptor positive (ER+) breast cancers, being the third-generation of aromatase inhibitors (AIs), an effective alternative to the classical tamoxifen. AIs inhibit the enzyme aromatase, which is responsible for catalyzing the conversion of androgens to estrogens. In this study, it was evaluated the effects of several steroidal AIs, namely 3β-hydroxyandrost-4-en-17-one (1), androst-4-en-17-one (12), 4α,5α-epoxyandrostan-17-one (13a) and 5α-androst-2-en-17-one (16), on cell proliferation, cell cycle progression and cell death in an ER+ aromatase-overexpressing human breast cancer cell line (MCF-7aro). All AIs induced a decrease in cell proliferation and these anti-proliferative effects were due to a disruption in cell cycle progression and cell death, by apoptosis. AIs 1 and 16 caused cell cycle arrest in G0/G1, while AIs 12 and 13a induced an arrest in G2/M. Moreover, it was observed that these AIs induced apoptosis by different pathways, since AIs 1, 12 and 13a activated the apoptotic mitochondrial pathway, while AI 16 induced apoptosis through activation of caspase-8. These results are important for the elucidation of the cellular effects of steroidal AIs on breast cancer cells and will also highlight the importance of AIs as inducers of apoptosis in hormone-dependent breast cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MCF-7aro cells:

ER-positive aromatase-overexpressing breast cancer cell line

ER:

Estrogen receptor

SERM:

Selective ER modulator

AIs:

Aromatase inhibitors

DISC:

Death-inducing signaling complex

1 :

3β-hydroxyandrost-4-en-17-one

12 :

Androst-4-en-17-one

13a :

4α,5α-epoxyandrostan-17-one

16 :

5α-androst-2-en-17-one

MEM:

Eagles’s minimum essential medium

FBS:

Fetal bovine serum

CFBS:

Pre-treated charcoal heat-inactivated fetal bovine serum

T:

Testosterone

PI:

Propidium iodide

PS:

Phosphatidylserine

∆Ψm:

Mitochondrial transmembrane potential

DiOC6(3):

3,3′-dihexyloxacarbocyanine iodide

7-AAD:

7-aminoactinomycin D

STS:

Staurosporine

CCCP:

Carbonyl cyanide m-chlorophenylhydrazone

RLU:

Relative luminescence units

ROS:

Intracellular reactive oxygen species

DCFH2-DA:

2′,7′-dichlorodihydrofluorescein diacetate

PMA:

Phorbol 12-myristate 13-acetate

MFI:

Mean fluorescence intensity

References

  1. Ferlay J, Parkin DM, Steliarova-Foucher E (2010) Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer 46:765–781

    Article  CAS  PubMed  Google Scholar 

  2. Chen S (2011) An “omics” approach to determine the mechanisms of acquired aromatase inhibitor resistance. OMICS 15:347–352

    Article  CAS  PubMed  Google Scholar 

  3. Dutta U, Pant K (2008) Aromatase inhibitors: past, present and future in breast cancer therapy. Med Oncol 25:113–124

    Article  CAS  PubMed  Google Scholar 

  4. Santen RJ, Brodie H, Simpson ER, Siiteri PK, Brodie A (2009) History of aromatase: saga of an important biological mediator and therapeutic target. Endocr Rev 30:343–375

    Article  CAS  PubMed  Google Scholar 

  5. Zilli M, Grassadonia A, Tinari N et al (2009) Molecular mechanisms of endocrine resistance and their implication in the therapy of breast cancer. Biochim Biophys Acta 1795:62–81

    CAS  PubMed  Google Scholar 

  6. Giuliano M, Schifp R, Osborne CK, Trivedi MV (2011) Biological mechanisms and clinical implications of endocrine resistance in breast cancer. Breast 20(Suppl 3):S42–S49

    Article  PubMed  Google Scholar 

  7. Miller WR, Bartlett J, Brodie AM et al (2008) Aromatase inhibitors: are there differences between steroidal and nonsteroidal aromatase inhibitors and do they matter? Oncologist 13:829–837

    Article  CAS  PubMed  Google Scholar 

  8. Miki Y, Suzuki T, Hatori M et al (2007) Effects of aromatase inhibitors on human osteoblast and osteoblast-like cells: a possible androgenic bone protective effects induced by exemestane. Bone 40:876–887

    Article  CAS  PubMed  Google Scholar 

  9. Lewis-Wambi JS, Jordan VC (2009) Estrogen regulation of apoptosis: how can one hormone stimulate and inhibit? Breast Cancer Res 11:206

    Article  PubMed  Google Scholar 

  10. Song RX, Santen RJ (2003) Apoptotic action of estrogen. Apoptosis 8:55–60

    Article  CAS  PubMed  Google Scholar 

  11. Kyprianou N, English HF, Davidson NE, Isaacs JT (1991) Programmed cell death during regression of the MCF-7 human breast cancer following estrogen ablation. Cancer Res 51:162–166

    CAS  PubMed  Google Scholar 

  12. Truchet I, Jozan S, Guerrin M, Mazzolini L, Vidal S, Valette A (2000) Interconnections between E2-dependent regulation of cell cycle progression and apoptosis in MCF-7 tumors growing on nude mice. Exp Cell Res 254:241–248

    Article  CAS  PubMed  Google Scholar 

  13. Detre S, Salter J, Barnes DM et al (1999) Time-related effects of estrogen withdrawal on proliferation- and cell death-related events in MCF-7 xenografts. Int J Cancer 81:309–313

    Article  CAS  PubMed  Google Scholar 

  14. Thiantanawat A, Long BJ, Brodie AM (2003) Signaling pathways of apoptosis activated by aromatase inhibitors and antiestrogens. Cancer Res 63:8037–8050

    CAS  PubMed  Google Scholar 

  15. Sasano H, Sato S, Ito K et al (1999) Effects of aromatase inhibitors on the pathobiology of the human breast, endometrial and ovarian carcinoma. Endocr Relat Cancer 6:197–204

    Article  CAS  PubMed  Google Scholar 

  16. Itoh T, Karlsberg K, Kijima I et al (2005) Letrozole-, anastrozole-, and tamoxifen-responsive genes in MCF-7aro cells: a microarray approach. Mol Cancer Res 3:203–218

    CAS  PubMed  Google Scholar 

  17. Cepa MM, Tavares da Silva EJ, Correia-da-Silva G, Roleira FM, Teixeira NA (2005) Structure-activity relationships of new A, D-ring modified steroids as aromatase inhibitors: design, synthesis, and biological activity evaluation. J Med Chem 48:6379–6385

    Article  CAS  PubMed  Google Scholar 

  18. Cepa M, Correia-da-Silva G, Tavares da Silva EJ et al (2008) Molecular mechanisms of aromatase inhibition by new A, D-ring modified steroids. Biol Chem 389:1183–1191

    Article  CAS  PubMed  Google Scholar 

  19. Cepa M, Correia-da-Silva G, da Silva EJ, Roleira FM, Borges M, Teixeira NA (2008) New steroidal aromatase inhibitors: suppression of estrogen-dependent breast cancer cell proliferation and induction of cell death. BMC Cell Biol 9:41

    Article  PubMed  Google Scholar 

  20. Amaral C, Borges M, Melo S, da Silva ET, Correia-da-Silva G, Teixeira N (2012) Apoptosis and autophagy in breast cancer cells following exemestane treatment. PLoS One 7:e42398

    Article  CAS  PubMed  Google Scholar 

  21. Varela C, Tavares da Silva EJ, Amaral C et al (2012) New structure-activity relationships of A- and D-ring modified steroidal aromatase inhibitors: design, synthesis, and biochemical evaluation. J Med Chem 55:3992–4002

    Article  CAS  PubMed  Google Scholar 

  22. Numazawa M, Mutsumi A, Hoshi K, Koike R (1989) 19-Hydroxy-4-androsten-17-one: potential competitive inhibitor of estrogen biosynthesis. Biochem Biophys Res Commun 160:1009–1014

    Article  CAS  PubMed  Google Scholar 

  23. Numazawa M, Kamiyama T, Tachibana M, Oshibe M (1996) Synthesis and structure-activity relationships of 6-substituted androst-4-ene analogs as aromatase inhibitors. J Med Chem 39:2245–2252

    Article  CAS  PubMed  Google Scholar 

  24. Amaral C, Varela C, Azevedo M et al (2013) Effects of steroidal aromatase inhibitors on sensitive and resistant breast cancer cells: aromatase inhibition and autophagy. J Steroid Biochem Mol Biol 135C:51–59

    Article  Google Scholar 

  25. DiPaola RS (2002) To arrest or not to G(2)-M Cell-cycle arrest : commentary re: a. K. Tyagi et al., Silibinin strongly synergizes human prostate carcinoma DU145 cells to doxorubicin-induced growth inhibition, G(2)-M arrest, and apoptosis. Clin. cancer res., 8: 3512–3519, 2002. Clin Cancer Res 8:3311–3314

    CAS  PubMed  Google Scholar 

  26. Kroemer G (1998) The mitochondrion as an integrator/coordinator of cell death pathways. Cell Death Differ 5:547

    Article  CAS  PubMed  Google Scholar 

  27. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    Article  CAS  PubMed  Google Scholar 

  28. Ghobrial IM, Witzig TE, Adjei AA (2005) Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin 55:178–194

    Article  PubMed  Google Scholar 

  29. Wajant H (2002) The Fas signaling pathway: more than a paradigm. Science 296:1635–1636

    Article  CAS  PubMed  Google Scholar 

  30. Debatin KM (2004) Apoptosis pathways in cancer and cancer therapy. Cancer Immunol Immunother 53:153–159

    Article  PubMed  Google Scholar 

  31. Kantari C, Walczak H (2011) Caspase-8 and bid: caught in the act between death receptors and mitochondria. Biochim Biophys Acta 1813:558–563

    Article  CAS  PubMed  Google Scholar 

  32. Cagnol S, Chambard JC (2010) ERK and cell death: mechanisms of ERK-induced cell death–apoptosis, autophagy and senescence. FEBS J 277:2–21

    Article  CAS  PubMed  Google Scholar 

  33. de Vries JF, Wammes LJ, Jedema I et al (2007) Involvement of caspase-8 in chemotherapy-induced apoptosis of patient derived leukemia cell lines independent of the death receptor pathway and downstream from mitochondria. Apoptosis 12:181–193

    Article  PubMed  Google Scholar 

  34. Petak I, Houghton JA (2001) Shared pathways: death receptors and cytotoxic drugs in cancer therapy. Pathol Oncol Res 7:95–106

    Article  CAS  PubMed  Google Scholar 

  35. Ferreira CG, Span SW, Peters GJ, Kruyt FA, Giaccone G (2000) Chemotherapy triggers apoptosis in a caspase-8-dependent and mitochondria-controlled manner in the non-small cell lung cancer cell line NCI-H460. Cancer Res 60:7133–7141

    CAS  PubMed  Google Scholar 

  36. van Raam BJ, Salvesen GS (2012) Proliferative versus apoptotic functions of caspase-8 Hetero or homo: the caspase-8 dimer controls cell fate. Biochim Biophys Acta 1824:113–122

    Article  PubMed  Google Scholar 

  37. Zhou DJ, Pompon D, Chen SA (1990) Stable expression of human aromatase complementary DNA in mammalian cells: a useful system for aromatase inhibitor screening. Cancer Res 50:6949–6954

    CAS  PubMed  Google Scholar 

  38. Sun XZ, Zhou D, Chen S (1997) Autocrine and paracrine actions of breast tumor aromatase. A three-dimensional cell culture study involving aromatase transfected MCF-7 and T-47D cells. J Steroid Biochem Mol Biol 63:29–36

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Fundação para a Ciência e Tecnologia (FCT) for the PhD grants attributed to Cristina Amaral (SFRH/BD/48190/2008) and Carla Varela (SFRH/BD/44872/2008). This work was funded by FEDER Funds through the Operational Competitiveness Program- COMPETE and by National Funds through FCT under the project FCOMP-01-0124-FEDER-020970 (PTDC/QUI-BIQ/120319/2010). We thank Dr. Shiuan Chen for kindly supplying MCF-7aro cells.

Conflict of interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natércia Teixeira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amaral, C., Varela, C., Borges, M. et al. Steroidal aromatase inhibitors inhibit growth of hormone-dependent breast cancer cells by inducing cell cycle arrest and apoptosis. Apoptosis 18, 1426–1436 (2013). https://doi.org/10.1007/s10495-013-0879-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0879-6

Keywords

Navigation