Skip to main content
Log in

Induction of apoptosis in T lymphoma cells by long-term treatment with thyroxine involves PKCζ nitration by nitric oxide synthase

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Thyroid hormones are important regulators of cell physiology, inducing cell proliferation, differentiation or apoptosis, depending on the cell type. Thyroid hormones induce proliferation in short-term T lymphocyte cultures. In this study, we assessed the effect of long-term thyroxine (T4) treatment on the balance of proliferation and apoptosis and the intermediate participants in T lymphoma cells. Treatment with T4 affected this balance from the fifth day of culture, inhibiting proliferation in a time-dependent manner. This effect was associated with apoptosis induction, as characterized through nuclear morphological changes, DNA fragmentation, and Annexin V-FITC/Propidium Iodide co-staining. In addition, increased iNOS gene and protein levels, and enzyme activity were observed. The generation of reactive oxygen species, depolarization of the mitochondrial membrane, and a reduction in glutathione levels were also observed. The imbalance between oxidants and antioxidants species is typically associated with the nitration of proteins, including PKCζ, an isoenzyme essential for lymphoma cell division and survival. Consistently, evidence of PKCζ nitration via proteasome degradation was also observed in this study. Taken together, these results suggest that the long-term culture of T lymphoma cells with T4 induces apoptosis through the increased production of oxidative species resulting from both augmented iNOS activity and the loss of mitochondrial function. These species induce the nitration of proteins involved in cell viability, promoting proteasome degradation. Furthermore, we discuss the impact of these results on the modulation of T lymphoma growth and the thyroid status in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alisi A, Demori I, Spagnuolo S, Pierantozzi E, Fugassa E, Leoni S (2005) Thyroid status affects rat liver regeneration after partial hepatectomy by regulating cell cycle and apoptosis. Cell Physiol Biochem 15:69–76. doi:10.1159/000083639

    Article  PubMed  CAS  Google Scholar 

  2. Scapin S, Leoni S, Spagnuolo S, Gnocchi D, De Vito P, Luly P, Pedersen JZ, Incerpi S (2010) Short-term effects of thyroid hormones during development: focus on signal transduction. Steroids 75(8–9):576–584. doi:10.1016/j.steroids.2009.10.013

    Article  PubMed  CAS  Google Scholar 

  3. Wang YY, Jiao B, Guo WG, Che HL, Yu ZB (2010) Excessive thyroxine enhances susceptibility to apoptosis and decreases contractility of cardiomyocytes. Mol Cell Endocrinol 320(1–2):67–75. doi:10.1016/j.mce.2010.01.031

    Article  PubMed  CAS  Google Scholar 

  4. Pascual A, Aranda A (2012) Thyroid hormone receptors, cell growth and differentiation. Biochim Biophys Acta. doi:10.1016/j.bbagen.2012.03.012

    Google Scholar 

  5. Davis PJ, Leonard JL, Davis FB (2008) Mechanisms of nongenomic actions of thyroid hormone. Front Neuroendocrinol 29:211–218. doi:10.1016/j.yfrne.2007.09.003

    Article  PubMed  CAS  Google Scholar 

  6. Ishizuya-Oka A (2011) Amphibian organ remodeling during metamorphosis: insight into thyroid hormone-induced apoptosis. Dev Growth Differ 53(2):202–212. doi:10.1111/j.1440-169X.2010.01222.x

    Article  PubMed  CAS  Google Scholar 

  7. Miyata K, Ose K (2012) Thyroid hormone-disrupting effects and the amphibian metamorphosis assay. J Toxicol Pathol 25(1):1–9. doi:10.1293/tox.25.1

    Article  PubMed  CAS  Google Scholar 

  8. Contreras-Jurado C, García-Serrano L, Gómez-Ferrería M, Costa C, Paramio JM, Aranda A (2011) The thyroid hormone receptors as modulators of skin proliferation and inflammation. J Biol Chem 286(27):24079–24088. doi:10.1074/jbc.M111.218487

    Article  PubMed  CAS  Google Scholar 

  9. Ledda-Columbano GM, Molotzu F, Pibiri M, Cossu C, Perra A, Columbano A (2006) Thyroid hormone induces cyclin D1 nuclear translocation and DNA synthesis in adult rat cardiomyocytes. FASEB J 20(1):87–94. doi:10.1096/fj.05-4202com

    Article  PubMed  CAS  Google Scholar 

  10. Ledda-Columbano GM, Perra A, Pibiri M, Molotzu F, Columbano A (2005) Induction of pancreatic acinar cell proliferation by thyroid hormone. J Endocrinol 185(3):393–399. doi:10.1677/joe.1.06110

    Article  PubMed  CAS  Google Scholar 

  11. Columbano A, Pibiri M, Deidda M, Cossu C, Scanlan TS, Chiellini G, Muntoni S, Ledda-Columbano GM (2006) The thyroid hormone receptor-beta agonist GC-1 induces cell proliferation in rat liver and pancreas. Endocrinology 147(7):3211–3218. doi:10.1210/en.2005-1561

    Article  PubMed  CAS  Google Scholar 

  12. Di Fulvio M, Coleoni AH, Pellizas CG, Masini-Repiso AM (2000) Tri-iodothyronine induces proliferation in cultured bovine thyroid cells: evidence for the involvement of epidermal growth factor-associated tyrosine kinase activity. J Endocrinol 166(1):173–182. doi:10.1677/joe.0.1660173

    Article  PubMed  Google Scholar 

  13. Bedó G, Pascual A, Aranda A (2011) Early thyroid hormone-induced gene expression changes in N2a-β neuroblastoma cells. J Mol Neurosci 45(2):76–86. doi:10.1007/s12031-010-9389-y

    Article  PubMed  Google Scholar 

  14. Wagner MS, Wajner SM, Maia AL (2008) The role of thyroid hormone in testicular development and function. J Endocrinol 199(3):351–365. doi:10.1677/JOE-08-0218

    Article  PubMed  CAS  Google Scholar 

  15. González-Sancho JM, Figueroa A, López-Barahona M, López E, Beug H, Muñoz A (2002) Inhibition of proliferation and expression of T1 and cyclin D1 genes by thyroid hormone in mammary epithelial cells. Mol Carcinog 34(1):25–34. doi:10.1002/mc.10046

    Article  PubMed  Google Scholar 

  16. Yehuda-Shnaidman E, Kalderon B, Bar-Tana J (2005) Modulation of mitochondrial transition pore components by thyroid hormone. Endocrinology 146(5):2462–2472. doi:10.1210/en.2004-1161

    Article  PubMed  CAS  Google Scholar 

  17. Chiloeches A, Sánchez-Pacheco A, Gil-Araujo B, Aranda A, Lasa M (2008) Thyroid hormone-mediated activation of the ERK/dual specificity phosphatase 1 pathway augments the apoptosis of GH4C1 cells by down-regulating nuclear factor-kappaB activity. Mol Endocrinol 22(11):2466–2480. doi:10.1210/me.2008-0107

    Article  PubMed  CAS  Google Scholar 

  18. Sar P, Peter R, Rath B, Das Mohapatra A, Mishra SK (2011) 3,3′5 Triiodo l-thyronine induces apoptosis in human breast cancer MCF-7 cells, repressing SMP30 expression through negative thyroid response elements. PLoS One 6:e20861. doi:10.1371/journal.pone.0020861

    Article  PubMed  CAS  Google Scholar 

  19. Yamada-Okabe T, Satoh Y, Yamada-Okabe H (2003) Thyroid hormone induces the expression of 4-1BB and activation of caspases in a thyroid hormone receptor-dependent manner. Eur J Biochem 270(14):3064–3073. doi:10.1046/j.1432-1033.2003.03686.x

    Article  PubMed  CAS  Google Scholar 

  20. Zhang L, Cooper-Kuhn CM, Nannmark U, Blomgren K, Kuhn HG (2010) Stimulatory effects of thyroid hormone on brain angiogenesis in vivo and in vitro. J Cereb Blood Flow Metab 30:323–335. doi:10.1038/jcbfm.2009.216

    Article  PubMed  CAS  Google Scholar 

  21. Lin HY, Tang HY, Keating T, Wu YH, Shih A, Hammond D, Sun M, Hercbergs A, Davis FB, Davis PJ (2008) Resveratrol is pro-apoptotic and thyroid hormone is anti-apoptotic in glioma cells: both actions are integrin and ERK mediated. Carcinogenesis 29:62–69. doi:10.1093/carcin/bgm239

    Article  PubMed  CAS  Google Scholar 

  22. Balázs C, Leövey A, Szabó M, Bakó G (1980) Stimulating effect of triiodothyronine on cell-mediated immunity. Eur J Clin Pharmacol 17(1):19–23. doi:10.1007/BF00561672

    Article  PubMed  Google Scholar 

  23. Keast D, Taylor K (1982) The effect of tri-iodothyronine on the phytohaemagglutinin response of T lymphocytes. Clin Exp Immunol 47(1):217–220

    PubMed  CAS  Google Scholar 

  24. Ong ML, Malkin DG, Malkin A (1986) Alteration of lymphocyte reactivities by thyroid hormones. Int J Immunopharmacol 8(7):755–762. doi:10.1016/0192-0561

    Article  PubMed  CAS  Google Scholar 

  25. Barreiro Arcos ML, Gorelik G, Klecha A, Genaro AM, Cremaschi GA (2006) Thyroid hormones increase inducible nitric oxide synthase gene expression downstream from PKC-zeta in murine tumor T lymphocytes. Am J Physiol Cell Physiol 291(2):C327–C336

    Article  PubMed  Google Scholar 

  26. Barreiro Arcos ML, Gorelik G, Klecha A, Goren N, Cerquetti C, Cremaschi GA (2003) Inducible nitric oxide synthase-mediated proliferation of a T lymphoma cell line. Nitric Oxide 8(2):111–118. doi:10.1016/S1089-8603(02)00181-7

    Article  PubMed  Google Scholar 

  27. Barreiro Arcos ML, Sterle HA, Paulazo MA, Valli E, Klecha AJ, Isse B, Pellizas CG, Farias RN, Cremaschi GA (2011) Cooperative nongenomic and genomic actions on thyroid hormone mediated-modulation of T cell proliferation involve up-regulation of thyroid hormone receptor and inducible nitric oxide synthase expression. J Cell Physiol 226(12):3208–3218. doi:10.1002/jcp.22681

    Article  PubMed  CAS  Google Scholar 

  28. Mihara S, Suzuki N, Wakisaka S, Suzuki S, Sekita N, Yamamoto S, Saito N, Hoshino T, Sakane T (1999) Effects of thyroid hormones on apoptotic cell death of human lymphocytes. J Clin Endocrinol Metab 84(4):1378–1385. doi:10.1210/jc.84.4.1378

    Article  PubMed  CAS  Google Scholar 

  29. Hodkinson CF, Simpson EE, Beattie JH, O’Connor JM, Campbell DJ, Strain JJ, Wallace JM (2009) Preliminary evidence of immune function modulation by thyroid hormones in healthy men and women aged 55–70 years. J Endocrinol 202(1):55–63. doi:10.1677/JOE-08-0488

    Article  PubMed  CAS  Google Scholar 

  30. Hermann M, Lorenz H, Voll R, Grunke M, Woith W, Kalden JR (1994) A rapid and simple method for the isolation of apoptotic DNA fragments. Nucleic Acids Res 22(24):5506–5507. doi:10.1093/nar/22.24.5506

    Article  Google Scholar 

  31. Walsh GM, Dewson G, Wardlaw AJ, Levi-Schaffer F, Moqbel R (1998) A comparative study of different methods for the assessment of apoptosis and necrosis in human eosinophils. J Immunol Methods 217(1–2):153–163. doi:10.1016/S0022-1759(98)00103-3

    Article  PubMed  CAS  Google Scholar 

  32. Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106(1):207–212. doi:10.1016/0003-2697(80)90139-6

    Article  PubMed  CAS  Google Scholar 

  33. Ma C, Xie J, Huang X, Wang G, Wang Y, Wang X, Zuo S (2009) Thyroxine alone or thyroxine plus triiodothyronine replacement therapy for hypothyroidism. Nucl Med Commun 30:586–593. doi:10.1097/MNM.0b013e32832c79e0

    Article  PubMed  CAS  Google Scholar 

  34. Fratzl-Zelman N, Hörandner H, Luegmayr E, Varga F, Ellinger A, Erlee MP, Klaushofer K (1997) Effects of triiodothyronine on the morphology of cells and matrix, the localization of alkaline phosphatase, and the frequency of apoptosis in long-term cultures of MC3T3-E1 cells. Bone 20:225–236. doi:10.1016/S8756-3282(96)00367-5

    Article  PubMed  CAS  Google Scholar 

  35. Kashiwagi A, Hanada H, Yabuki M, Kanno T, Ishisaka R, Sasaki J, Inoue M, Utsumi K (1999) Thyroxine enhancement and the role of reactive oxygen species in tadpole tail apoptosis. Free Radic Biol Med. 26:1001–1009. doi:10.1016/S0891-5849(98)00296-2

    Article  PubMed  CAS  Google Scholar 

  36. Murphy MP, Holmgren A, Larsson NG, Halliwell B, Chang CJ, Kalyanaraman B, Rhee SG, Thornalley PJ, Partridge L, Gems D, Nyström T, Belousov V, Schumacker PT, Winterbourn CC (2011) Unraveling the biological roles of reactive oxygen species. Cell Metab 13(4):361–366. doi:10.1016/j.cmet.2011.03.010

    Article  PubMed  CAS  Google Scholar 

  37. Kalyanaraman B, Darley-Usmar V, Davies KJ, Dennery PA, Forman HJ, Grisham MB, Mann GE, Moore K, Roberts LJ, Ischiropoulos H (2012) Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic Biol Med 52(1):1–6. doi:10.1016/j.freeradbiomed.2011.09.030

    Article  PubMed  CAS  Google Scholar 

  38. Pelicano H, Carney D, Huang P (2004) ROS stress in cancer cells and therapeutic implications. Drug Resist Updates 7:97–110. doi:10.1016/j.drup.2004.01.004

    Article  CAS  Google Scholar 

  39. Formentini L, Sánchez-Aragó M, Sánchez-Cenizo L, Cuezva JM (2012) The mitochondrial ATPase inhibitory factor 1 triggers a ROS-mediated retrograde prosurvival and proliferative response. Mol Cell 45(6):731–742. doi:10.1016/j.molcel.2012.01.008

    Article  PubMed  CAS  Google Scholar 

  40. Hensley K, Robinson KA, Gabbita SP, Salsman S, Floyd RA (2000) Reactive oxygen species, cell signaling, and cell injury. Free Radic Biol Med 28:1456–1462. doi:10.1016/S0891-5849(00)00252-5

    Article  PubMed  CAS  Google Scholar 

  41. Tarpey MM, Wink DA, Grisham MB (2004) Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations. Am J Physiol Regul Integr Comp Physiol 286(3):R431–R444

    Article  PubMed  CAS  Google Scholar 

  42. Ortega AL, Mena S, Estrela JM (2011) Glutathione in cancer cell death. Cancers 3:1285–1310. doi:10.3390/cancers3011285

    Article  CAS  Google Scholar 

  43. Yang M, Chitambar CR (2008) Role of oxidative stress in the induction of metallothionein-2A and heme oxygenase-1 gene expression by the antineoplastic agent gallium nitrate in human lymphoma cells. Free Radical Biol Med 45(6):763–772. doi:10.1016/j.freeradbiomed.2008.05.031

    Article  CAS  Google Scholar 

  44. Bhalla S, Gordon LI, David K, Prachand S, Singh ATK, Yang S, Winter JN, Guo D, O’Halloran T, Platanias LC, Evens AM (2010) Glutathione depletion enhances arsenic trioxide-induced apoptosis in lymphoma cells through mitochondrial-independent mechanisms. Br J Haematol 150(3):365–369. doi:10.1111/j.1365-2141.2010.08197.x

    Article  PubMed  CAS  Google Scholar 

  45. Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive species (ROS) in apoptosis induction. Apoptosis 5(5):415–418. doi:10.1023/A:1009616228304

    Article  PubMed  CAS  Google Scholar 

  46. Shao N, Zou J, Li J, Chen F, Dai J, Qu X, Sun X, Ma D, Ji C (2012) Hyper-activation of WNT/β-catenin signaling pathway mediates anti-tumor effects of histone deacetylase inhibitors in acute T lymphoblastic leukemia. Leuk Lymphoma 53(9):1769–1778. doi:10.3109/10428194.2012.663085

    Article  PubMed  CAS  Google Scholar 

  47. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87(1):315–424

    Article  PubMed  CAS  Google Scholar 

  48. Souza JM, Choi I, Chen Q, Weisse M, Daikhin E, Yudkoff M, Obin M, Ara J, Horwitz J, Ischiropoulos H (2000) Proteolytic degradation of tyrosine nitrated proteins. Arch Biochem Biophys 380(2):360–366. doi:10.1006/abbi.2000.1940

    Article  PubMed  CAS  Google Scholar 

  49. Galiñanes M, Matata BM (2002) Protein nitration is predominantly mediated by a peroxynitrite-dependent pathway in cultured human leucocytes. Biochem J 367(Pt 2):467–473. doi:10.1042/BJ20020825

    Article  PubMed  Google Scholar 

  50. Knapp LT, Kanterewicz BI, Hayes EL, Klann E (2001) Peroxynitrite-induced tyrosine nitration and inhibition of protein kinase C. Biochem Biophys Res Commun 286(4):764–770. doi:10.1006/bbrc.2001.5448

    Article  PubMed  CAS  Google Scholar 

  51. Banan A, Zhang L, Fields JZ, Farhadi A, Talmage DA, Keshavarzian A (2002) PKC-zeta prevents oxidant-induced iNOS upregulation and protects the microtubules and gut barrier integrity. Am J Physiol Gastrointest Liver Physiol 283(4):G909–G922

    PubMed  CAS  Google Scholar 

  52. Tangpong J, Sompol P, Vore M, St Clair W, Butterfield DA, St Clair DK (2008) Tumor necrosis factor alpha-mediated nitric oxide production enhances manganese superoxide dismutase nitration and mitochondrial dysfunction in primary neurons: an insight into the role of glial cells. Neuroscience 151(2):622–629. doi:10.1016/j.neuroscience.2007.10.046

    Article  PubMed  CAS  Google Scholar 

  53. Gorelik G, Barreiro Arcos ML, Klecha AJ, Cremaschi GA (2002) Differential expression of protein kinase C isoenzymes related to high nitric oxide synthase activity in a T lymphoma cell line. Biochim Biophys Acta 1588:179–188. doi:10.1016/S0925-4439(02)00163-1

    Article  PubMed  CAS  Google Scholar 

  54. Burke AJ, Sullivan FJ, Giles FJ, Glynn SA (2013) The yin and yang of nitric oxide in cancer progression. Carcinogenesis 34:503–512. doi:10.1093/carcin/bgt034

    Article  PubMed  CAS  Google Scholar 

  55. Cahuana GM, Tejedo JR, Jimenez J, Ramırez R, Sobrino F, Bedoya FJ (2004) Nitric oxide-induced carbonylation of Bcl-2, GAPDH and ANT precedes apoptotic events in insulin-secreting RINm5F cells. Exp Cell Res 293:22–30. doi:10.1016/j.yexcr.2003.10.004

    Article  PubMed  CAS  Google Scholar 

  56. Lecain E, Omri B, Behar-Cohen F, Tran Ba Huy P, Crisanti P (2007) The role of PKCzeta in amikacin-induced apoptosis in the cochlea: prevention by aspirin. Apoptosis 12:333–342. doi:10.1007/s10495-006-0580-0

    Article  PubMed  CAS  Google Scholar 

  57. Kim JS, Park ZY, Yoo YJ, Yu SS, Chun JS (2005) p38 kinase mediates nitric oxide-induced apoptosis of chondrocytes through the inhibition of protein kinase C zeta by blocking autophosphorylation. Cell Death Differ 12:201–212. doi:10.1038/sj.cdd.4401511

    Article  PubMed  CAS  Google Scholar 

  58. Martínez-Iglesias O, García-Silva S, Regadera J, Aranda A (2009) Hypothyroidism enhances tumor invasiveness and metastasis development. PLoS One 4(7):e6428. doi:10.1371/journal.pone.0006428

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mrs María Rosa Gonzalez Murano for her excellent technical assistance. This work was supported by Grants from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), PIP-CONICET N° 00275, from Agencia Nacional para la Promoción Científica y Técnica, PICT 2008 N° 1858 and from University of Buenos Aires, UBACYT N° 20020100100291.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Cremaschi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barreiro Arcos, M.L., Sterle, H.A., Vercelli, C. et al. Induction of apoptosis in T lymphoma cells by long-term treatment with thyroxine involves PKCζ nitration by nitric oxide synthase. Apoptosis 18, 1376–1390 (2013). https://doi.org/10.1007/s10495-013-0869-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0869-8

Keywords

Navigation