Skip to main content

Advertisement

Log in

Bioluminescence imaging of caspase-3 activity in mouse liver

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Apoptosis is an essential process for the maintenance of liver physiology. The ability to noninvasively image apoptosis in livers would provide unique insights into its role in liver disease processes. In the present work, we established a stable mouse model by hydrodynamics methods to study the activity of caspase-3 and evaluate the effect of the apoptosis inhibitors in mouse livers under true physiological conditions by bioluminescence imaging. The reporter plasmid attB-ANLuc(DEVD)BCLuc that contains fragment of attB and ANLuc(DEVD)BCLuc was codelivered with the mouse-codon optimized φC31 (φC31o) integrase plasmids specifically to mouse liver by hydrodynamic injection procedure. Then, φC31o integrase mediated intramolecular recombination between wild-type attB and attP site in mice, and thus the reporter expression cassette attB-ANLuc(DEVD)BCLuc was integrated permanently into mouse liver chromosome. We used these mice to characterize in vivo activation of caspase-3 upon treatment with LPS/d-GalN. Our data show that liver apoptosis could be reflected by the activity of luciferase. The shRNA targeting caspase-3 protein or apoptosis inhibitors could effectively downregulate luciferase activity in vivo. Also, this model could be used to measure caspase-3 activation during inflammatory and infectious events in vivo as verified by infected with MHV-3. This model could be used for screening anti-apoptosis compounds target mouse livers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kahraman A, Gerken G, Canbay A (2010) Apoptosis in immune-mediated liver diseases. Dig Dis 28:144–149. doi:10.1159/000299799

    Article  PubMed  Google Scholar 

  2. Neuman MG (2001) Apoptosis in diseases of the liver. Crit Rev Clin Lab Sci 38:109–166

    Article  PubMed  CAS  Google Scholar 

  3. Lavrik IN (2010) Systems biology of apoptosis signaling networks. Curr Opin Biotechnol 21:551–555. doi:10.1016/j.copbio.2010.07.001

    Article  PubMed  CAS  Google Scholar 

  4. Jin Z, El-Deiry WS (2005) Overview of cell death signaling pathways. Cancer Biol Ther 4:139–163

    Article  PubMed  CAS  Google Scholar 

  5. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  PubMed  CAS  Google Scholar 

  6. TawaP TamJ, Cassady R, Nicholson DW, Xanthoudakis S (2001) Quantitative analysis of fluorescent caspase substrate cleavage in intact cells and identification of novel inhibitors of apoptosis. Cell Death Differ 8:30–37. doi:10.1038/sj.cdd.4400769

    Article  Google Scholar 

  7. Waud JP, Bermudez Fajardo A, Sudhaharan T, Trimby AR, Jeffery J, Jones A, Campbell AK (2001) Measurement of proteases using chemiluminescence-resonance-energy transfer chimaeras between green fluorescent protein and aequorin. Biochem J 357:687–697

    Article  PubMed  CAS  Google Scholar 

  8. Préaudat M, Ouled-Diaf J, Alpha-Bazin B, Mathis G, Mitsugi T, Aono Y, Takahashi K, Takemoto H (2002) A homogeneous caspase-3 activity assay using HTRF technology. J Biomol Screen 7:267–274. doi:10.1089/108705702760047763

    PubMed  Google Scholar 

  9. Karvinen J, Hurskainen P, Gopalakrishnan S, Burns D, Warrior U, Hemmila I (2002) Homogeneous time-resolved fluorescence quenching assay (LANCE) for caspase-3. J Biomol Screen 7:223–231. doi:10.1089/108705702760047727

    Article  PubMed  CAS  Google Scholar 

  10. Sato A, Klaunberg B, Tolwani R (2004) In vivo bioluminescence imaging. Comp Med 54:631–634

    PubMed  CAS  Google Scholar 

  11. Hutchens M, Luker GD (2007) Applications of bioluminescence imaging to the study of infectious diseases. Cell Microbiol 9:2315–2322. doi:10.1111/j.1462-5822.2007.00995.x

    Article  PubMed  CAS  Google Scholar 

  12. Prinz A, Reither G, Diskar M, Schultz C (2008) Fluorescence and bioluminescence procedures for functional proteomics. Proteomics 8:1179–1196. doi:10.1002/pmic.200700802

    Article  PubMed  CAS  Google Scholar 

  13. Coppola JM, Ross BD, Rehemtulla A (2008) Noninvasive imaging of apoptosis and its application in cancer therapeutics. Clin Cancer Res 14:2492–2501. doi:10.1158/1078-0432.CCR-07-0782

    Article  PubMed  CAS  Google Scholar 

  14. Olivares EC, Hollis RP, Chalberg TW, Meuse L, Kay MA, Calos MP (2002) Site-specific genomic integration produces therapeutic factor IX levels in mice. Nat Biotechnol 20:1124–1128. doi:10.1038/nbt753

    Article  PubMed  CAS  Google Scholar 

  15. Virelizier JL, Allison AC (1976) Correlation of persistent mouse hepatitis virus (MHV-3) infection with its effect on mouse macrophage cultures. Arch Virol 50:279–285

    Article  PubMed  CAS  Google Scholar 

  16. Suda T, Liu D (2007) Hydrodynamic gene delivery: its principles and applications. Mol Ther 15:2063–2069. doi:10.1038/sj.mt.6300314

    Article  PubMed  CAS  Google Scholar 

  17. Liu F, Song Y, Liu D (1999) Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 6:1258–1266. doi:10.1038/sj.gt.3300947

    Article  PubMed  CAS  Google Scholar 

  18. Wurzer WJ, Planz O, Ehrhardt C, Giner M, Silberzahn T, Pleschka S, Ludwig S (2003) Caspase 3 activation is essential for efficient influenza virus propagation. EMBO J 22:2717–2728. doi:10.1093/emboj/cdg279

    Article  PubMed  CAS  Google Scholar 

  19. Thyagarajan B, Olivares EC, Hollis RP, Ginsburg DS, Calos MP (2001) Site-specific genomic integration in mammalian cells mediated by Phage φC31 integrase. Mol Cell Biol 21:3926–3934. doi:10.1128/MCB.21.12.3926-3934.2001

    Article  PubMed  CAS  Google Scholar 

  20. Rath G, Schneider C, Langlois B, Sartelet H, Morjani H, Btaouri HE, Dedieu S, Martiny L (2009) De novo ceramide synthesis is responsible for the anti-tumor properties of camptothecin and doxorubicin in follicular thyroid carcinoma. Int J Biochem Cell Biol 41:1165–1172. doi:10.1016/j.biocel.2008.10.021

    Article  PubMed  CAS  Google Scholar 

  21. Rath GM, Schneider C, Dedieu S, Rothhut B, Soula-Rothhut M, Ghoneim C, Sid B, Morjani H, El Btaouri H, Martiny L (2006) The C-terminal CD47/IAP-binding domain of thrombospondin-1 prevents camptothecin- and doxorubicin-induced apoptosis in human thyroid carcinoma cells. Biochim Biophys Acta 1763:1125–1134. doi:10.1016/j.bbamcr.2006.08.001

    Article  PubMed  CAS  Google Scholar 

  22. Belteki G, Gertsenstein M, Ow DW, Nagy A (2003) Site-specific cassette exchange and germline transmission with mouse ES cells expressing phiC31 integrase. Nat Biotechnol 21:321–324. doi:10.1038/nbt787

    Article  PubMed  CAS  Google Scholar 

  23. Raymond CS, Soriano P (2007) High-efficiency FLP and φC31 site-specific recombination in mammalian cells. PLoS ONE 2:e162. doi:10.1371/journal.pone.0000162

    Article  PubMed  Google Scholar 

  24. Morikawa A, Sugiyama T, Kato Y, Koide N, Jiang GZ, Takahashi K, Tamada Y, Yokochi T (1996) Apoptosis cell death in the response of d-galactosamine-sensitized mice to lipopolysaccharide as an experimental endotoxic shock model. Infect Immun 64:734–738

    PubMed  CAS  Google Scholar 

  25. Galanos C, Freudenburg MA, Reutter W (1979) Galactosamine induced sensitization to the lethal effect of endotoxin. Proc Natl Acad Sci USA 76:5939–5943

    Article  PubMed  CAS  Google Scholar 

  26. Vandenabeele P, Vanden Berghe T, Festjens N (2006) Caspase inhibitors promote alternative cell death pathways. Sci STKE 2006(358):pe44. doi:10.1126/stke.3582006

    Article  PubMed  Google Scholar 

  27. Gao S, Wang M, Ye H, Guo J, Xi D, Wang Z, Zhu C, Yan W, Luo X, Ning Q (2010) Dual interference with novel genes mfgl2 and mTNFR1 ameliorates murine hepatitis virus type 3-induced fulminant hepatitis in BALB/cJ mice. Hum Gene Ther 21:969–977. doi:10.1089/hum.2009.177

    Article  PubMed  CAS  Google Scholar 

  28. Maruyama H, Higuchi N, Nishikawa Y, Kameda S, Iino N, Kazama JJ, Takahashi N, Sugawa M, Hanawa H, Tada N, Miyazaki J, Gejyo F (2002) High-level expression of naked DNA delivered to rat liver via tail vein injection. J Gene Med 4:333–341. doi:10.1002/jgm.281

    Article  PubMed  CAS  Google Scholar 

  29. Tada M, Hatano E, Taura K, Nitta T, Koizumi N, Ikai I, Shimahara Y (2006) High volume hydrodynamic injection of plasmid DNA via the hepatic artery results in a high level of gene expression in rat hepatocellular carcinoma induced by diethylnitrosamine. J Gene Med 8:1018–1026. doi:10.1002/jgm.930

    Article  PubMed  CAS  Google Scholar 

  30. Zhang G, Budker V, Wolff JA (1999) High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum Gene Ther 10:1735–1737. doi:10.1089/10430349950017734

    Article  PubMed  CAS  Google Scholar 

  31. Fu Q, Jia S, Sun Z, Tian F, Du J, Zhou Y, Wang Y, Wang X, Zhan L (2009) Phi C31 integrase and liver-specific regulatory elements confer high-level, long-term expression of firefly luciferase in mouse liver. Biotechnol Lett 582:1151–1157. doi:10.1007/s10529-009-9996-2

    Article  Google Scholar 

  32. Fernandes-Alnemri T, Takahashi A, Armstrong R, Krebs J, Fritz L, Tomaselli KJ, Wang L, Yu Z, Croce CM, Salveson G, Eamshaw WC, Litwack G, Alnemri ES (1995) Mch3—a novel human apoptotic cysteine protease highly related to CPP32. Cancer Res 55:6045–6052

    PubMed  CAS  Google Scholar 

  33. Talanian RV, Quinlan C, Trautz S, Hackett MC, Mankovich JA, Banach D, Ghayur T, Brady KD, Wong WW (1997) Substrate specificities of caspase family proteases. J Biol Chem 272:9677–9682

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Yusen Zhou for the MHV used in this work. This work was partially supported by Mega-projects of Science Research for the 12th Five-Year Plan (#2012ZX10004-502, 2011ZXJ092-031), the Natural Science Foundation of China (#81170387, #30901812, #30900824, #30972615).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linsheng Zhan.

Additional information

Qiuxia Fu, Xiangguo Duan and Shaoduo Yan contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2120 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, Q., Duan, X., Yan, S. et al. Bioluminescence imaging of caspase-3 activity in mouse liver. Apoptosis 18, 998–1007 (2013). https://doi.org/10.1007/s10495-013-0849-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0849-z

Keywords

Navigation