Skip to main content
Log in

MAPK p38 and JNK have opposing activities on TRAIL-induced apoptosis activation in NSCLC H460 cells that involves RIP1 and caspase-8 and is mediated by Mcl-1

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce both caspase-dependent apoptosis and kinase activation in tumor cells. Here, we examined the consequences and mechanisms of TRAIL-induced MAPKs p38 and JNK in non-small cell lung cancer (NSCLC) cells. In apoptosis sensitive H460 cells, these kinases were phosphorylated, but not in resistant A549 cells. Time course experiments in H460 cells showed that induction of p38 phosphorylation preceded that of JNK. To explore the function of these kinases in apoptosis activation by TRAIL, chemical inhibitors or siRNAs were employed to impair JNK or p38 functioning. JNK activation counteracted TRAIL-induced apoptosis whereas activation of p38 stimulated apoptosis. Notably, the serine/threonine kinase RIP1 was cleaved following TRAIL treatment, concomitant with detectable JNK phosphorylation. Further examination of the role of RIP1 by short hairpin (sh)RNA-dependent knockdown or inhibition by necrostatin-1 showed that p38 can be phosphorylated in both RIP1-dependent and -independent manner, whereas JNK phosphorylation occurred independent of RIP1. On the other hand JNK appeared to suppress RIP1 cleavage via an unknown mechanism. In addition, only the activation of JNK by TRAIL was caspase-8-dependent. Finally, we identified Mcl-1, a known substrate for p38 and JNK, as a downstream modulator of JNK or p38 activity. Collectively, our data suggest in a subset of NSCLC cells a model in which TRAIL-induced activation of p38 and JNK have counteracting effects on Mcl-1 expression leading to pro- or anti-apoptotic effects, respectively. Strategies aiming to stimulate p38 and inhibit JNK may have benefit for TRAIL-based therapies in NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60:277–300

    Article  PubMed  Google Scholar 

  2. Blackstock AW, Govindan R (2007) Definitive chemoradiation for the treatment of locally advanced non small-cell lung cancer. J Clin Oncol 25:4146–4152

    Article  PubMed  CAS  Google Scholar 

  3. Lu C, Lee JJ, Komaki R, Herbst RS, Feng L, Evans WK et al (2010) Chemoradiotherapy with or without AE-941 in stage III non-small cell lung cancer: a randomized phase III trial. J Natl Cancer Inst 102:859–865

    Article  PubMed  CAS  Google Scholar 

  4. Falschlehner C, Emmerich CH, Gerlach B, Walczak H (2007) TRAIL signalling: decisions between life and death. Int J Biochem Cell Biol 39:1462–1475

    Article  PubMed  CAS  Google Scholar 

  5. Gonzalvez F, Ashkenazi A (2010) New insights into apoptosis signaling by Apo2L/TRAIL. Oncogene 29:4752–4765

    Article  PubMed  CAS  Google Scholar 

  6. Johnstone RW, Frew AJ, Smyth MJ (2008) The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer 8:782–798

    Article  PubMed  CAS  Google Scholar 

  7. Hoogwater FJ, Nijkamp MW, Smakman N, Steller EJ, Emmink BL, Westendorp BF et al (2010) Oncogenic K-Ras turns death receptors into metastasis-promoting receptors in human and mouse colorectal cancer cells. Gastroenterology 138:2357–2367

    Article  PubMed  CAS  Google Scholar 

  8. Ishimura N, Isomoto H, Bronk SF, Gores GJ (2006) Trail induces cell migration and invasion in apoptosis-resistant cholangiocarcinoma cells. Am J Physiol Gastrointest Liver Physiol 290:G129–G136

    Article  PubMed  CAS  Google Scholar 

  9. Azijli K, Yuvaraj S, Peppelenbosch MP, Wurdinger T, Dekker H, Joore J et al (2012) Kinome profiling of non-canonical TRAIL signaling reveals RIP1-Src-STAT3 dependent invasion in resistant non-small cell lung cancer cells. J Cell Sci. doi:10.1242/jcs.109587

    PubMed  Google Scholar 

  10. Karacay B, Sanlioglu S, Griffith TS, Sandler A, Bonthius DJ (2004) Inhibition of the NF-kappaB pathway enhances TRAIL-mediated apoptosis in neuroblastoma cells. Cancer Gene Ther 11:681–690

    Article  PubMed  CAS  Google Scholar 

  11. Kim YS, Schwabe RF, Qian T, Lemasters JJ, Brenner DA (2002) TRAIL-mediated apoptosis requires NF-kappaB inhibition and the mitochondrial permeability transition in human hepatoma cells. Hepatology 36:1498–1508

    PubMed  CAS  Google Scholar 

  12. Secchiero P, Gonelli A, Carnevale E, Milani D, Pandolfi A, Zella D et al (2003) TRAIL promotes the survival and proliferation of primary human vascular endothelial cells by activating the Akt and ERK pathways. Circulation 107:2250–2256

    Article  PubMed  Google Scholar 

  13. Thiefes A, Wolter S, Mushinski JF, Hoffmann E, ttrich-Breiholz O, Graue N et al (2005) Simultaneous blockade of NFkappaB, JNK, and p38 MAPK by a kinase-inactive mutant of the protein kinase TAK1 sensitizes cells to apoptosis and affects a distinct spectrum of tumor necrosis factor [corrected] target genes. J Biol Chem 280:27728–27741

    Article  PubMed  CAS  Google Scholar 

  14. Vaculova A, Hofmanova J, Soucek K, Kozubik A (2006) Different modulation of TRAIL-induced apoptosis by inhibition of pro-survival pathways in TRAIL-sensitive and TRAIL-resistant colon cancer cells. FEBS Lett 580:6565–6569

    Article  PubMed  CAS  Google Scholar 

  15. Weldon CB, Parker AP, Patten D, Elliott S, Tang Y, Frigo DE et al (2004) Sensitization of apoptotically-resistant breast carcinoma cells to TNF and TRAIL by inhibition of p38 mitogen-activated protein kinase signaling. Int J Oncol 24:1473–1480

    PubMed  CAS  Google Scholar 

  16. Zhang XD, Borrow JM, Zhang XY, Nguyen T, Hersey P (2003) Activation of ERK1/2 protects melanoma cells from TRAIL-induced apoptosis by inhibiting Smac/DIABLO release from mitochondria. Oncogene 22:2869–2881

    Article  PubMed  CAS  Google Scholar 

  17. Mathews ST, Plaisance EP, Kim T (2009) Imaging systems for westerns: chemiluminescence vs. infrared detection. Methods Mol Biol 536:499–513

    Article  PubMed  CAS  Google Scholar 

  18. Brummelkamp TR, Bernards R, Agami R (2002) Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2:243–247

    Article  PubMed  CAS  Google Scholar 

  19. van Leuken R, Clijsters L, van ZW, Lim D, Yao X, Wolthuis RM et al (2009) Polo-like kinase-1 controls Aurora A destruction by activating APC/C-Cdh1. PLoS ONE 4:e5282

    Article  PubMed  Google Scholar 

  20. Giovannetti E, Zucali PA, Assaraf YG, Leon LG, Smid K, Alecci C et al (2011) Preclinical emergence of vandetanib as a potent antitumour agent in mesothelioma: molecular mechanisms underlying its synergistic interaction with pemetrexed and carboplatin. Br J Cancer 105:1542–1553

    Article  PubMed  CAS  Google Scholar 

  21. Voortman J, Resende TP, Abou El Hassan MA, Giaccone G, Kruyt FA (2007) TRAIL therapy in non-small cell lung cancer cells: sensitization to death receptor-mediated apoptosis by proteasome inhibitor bortezomib. Mol Cancer Ther 6:2103–2112

    Article  PubMed  CAS  Google Scholar 

  22. Varfolomeev E, Maecker H, Sharp D, Lawrence D, Renz M, Vucic D et al (2005) Molecular determinants of kinase pathway activation by Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand. J Biol Chem 280:40599–40608

    Article  PubMed  CAS  Google Scholar 

  23. Krishna M, Narang H (2008) The complexity of mitogen-activated protein kinases (MAPKs) made simple. Cell Mol Life Sci 65:3525–3544

    Article  PubMed  CAS  Google Scholar 

  24. Bennett BL, Sasaki DT, Murray BW, O’Leary EC, Sakata ST, Xu W et al (2001) SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci USA 98:13681–13686

    Article  PubMed  CAS  Google Scholar 

  25. Young PR, McLaughlin MM, Kumar S, Kassis S, Doyle ML, McNulty D et al (1997) Pyridinyl imidazole inhibitors of p38 mitogen-activated protein kinase bind in the ATP site. J Biol Chem 272:12116–12121

    Article  PubMed  CAS  Google Scholar 

  26. Wang Z, Canagarajah BJ, Boehm JC, Kassisa S, Cobb MH, Young PR et al (1998) Structural basis of inhibitor selectivity in MAP kinases. Structure 6:1117–1128

    Article  PubMed  CAS  Google Scholar 

  27. Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X et al (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4:313–321

    Article  PubMed  CAS  Google Scholar 

  28. Ferreira CG, Span SW, Peters GJ, Kruyt FA, Giaccone G (2000) Chemotherapy triggers apoptosis in a caspase-8-dependent and mitochondria-controlled manner in the non-small cell lung cancer cell line NCI-H460. Cancer Res 60:7133–7141

    PubMed  CAS  Google Scholar 

  29. Son JK, Varadarajan S, Bratton SB (2010) TRAIL-activated stress kinases suppress apoptosis through transcriptional upregulation of Mcl-1. Cell Death Differ 17:1288–1301

    Article  PubMed  CAS  Google Scholar 

  30. Trouillas M, Saucourt C, Duval D, Gauthereau X, Thibault C, Dembele D et al (2008) Bcl2, a transcriptional target of p38alpha, is critical for neuronal commitment of mouse embryonic stem cells. Cell Death Differ 15:1450–1459

    Article  PubMed  CAS  Google Scholar 

  31. Stegehuis JH, de Wilt LH, de Vries EG, Groen HJ, de Jong S, Kruyt FA (2010) TRAIL receptor targeting therapies for non-small cell lung cancer: current status and perspectives. Drug Resist Updat 13:2–15

    Article  PubMed  CAS  Google Scholar 

  32. Zhang L, Fang B (2005) Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther 12:228–237

    Article  PubMed  CAS  Google Scholar 

  33. Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75:50–83

    Article  PubMed  CAS  Google Scholar 

  34. Festjens N, Vanden Berghe T, Cornelis S, Vandenabeele P (2007) RIP1, a kinase on the crossroads of a cell’s decision to live or die. Cell Death Differ 14:400–410

    Article  PubMed  CAS  Google Scholar 

  35. Lin Y, Devin A, Rodriguez Y, Liu ZG (1999) Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev 13:2514–2526

    Article  PubMed  CAS  Google Scholar 

  36. Martinon F, Holler N, Richard C, Tschopp J (2000) Activation of a pro-apoptotic amplification loop through inhibition of NF-kappaB-dependent survival signals by caspase-mediated inactivation of RIP. FEBS Lett 468:134–136

    Article  PubMed  CAS  Google Scholar 

  37. Lin Y, Devin A, Cook A, Keane MM, Kelliher M, Lipkowitz S et al (2000) The death domain kinase RIP is essential for TRAIL (Apo2L)-induced activation of IkappaB kinase and c-Jun N-terminal kinase. Mol Cell Biol 20:6638–6645

    Article  PubMed  CAS  Google Scholar 

  38. Thomas LW, Lam C, Edwards SW (2010) Mcl-1; the molecular regulation of protein function. FEBS Lett 584:2981–2989

    Article  PubMed  CAS  Google Scholar 

  39. Zhong Q, Gao W, Du F, Wang X (2005) Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell 121:1085–1095

    Article  PubMed  CAS  Google Scholar 

  40. Domina AM, Vrana JA, Gregory MA, Hann SR, Craig RW (2004) MCL1 is phosphorylated in the PEST region and stabilized upon ERK activation in viable cells, and at additional sites with cytotoxic okadaic acid or taxol. Oncogene 23:5301–5315

    Article  PubMed  CAS  Google Scholar 

  41. Kodama Y, Taura K, Miura K, Schnabl B, Osawa Y, Brenner DA (2009) Antiapoptotic effect of c-Jun N-terminal kinase-1 through Mcl-1 stabilization in TNF-induced hepatocyte apoptosis. Gastroenterology 136:1423–1434

    Article  PubMed  CAS  Google Scholar 

  42. Corazza N, Jakob S, Schaer C, Frese S, Keogh A, Stroka D et al (2006) TRAIL receptor-mediated JNK activation and Bim phosphorylation critically regulate Fas-mediated liver damage and lethality. J Clin Invest 116:2493–2499

    Article  PubMed  CAS  Google Scholar 

  43. Bogoyevitch MA, Ngoei KR, Zhao TT, Yeap YY, Ng DC (2010) c-Jun N-terminal kinase (JNK) signaling: recent advances and challenges. Biochim Biophys Acta 1804:463–475

    Article  PubMed  CAS  Google Scholar 

  44. Mahalingam D, Keane M, Pirianov G, Mehmet H, Samali A, Szegezdi E (2009) Differential activation of JNK1 isoforms by TRAIL receptors modulate apoptosis of colon cancer cell lines. Br J Cancer 100:1415–1424

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was performed within the framework of project T3-112 of the Dutch Top Institute Pharma and supported by grant RUG2011-5211 from the Dutch Cancer Society. We thank Dr. S. Cillesen for technical assistance.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank A. E. Kruyt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azijli, K., Yuvaraj, S., van Roosmalen, I. et al. MAPK p38 and JNK have opposing activities on TRAIL-induced apoptosis activation in NSCLC H460 cells that involves RIP1 and caspase-8 and is mediated by Mcl-1. Apoptosis 18, 851–860 (2013). https://doi.org/10.1007/s10495-013-0829-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0829-3

Keywords

Navigation