Skip to main content
Log in

Momordin Ic induces HepG2 cell apoptosis through MAPK and PI3K/Akt-mediated mitochondrial pathways

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Momordin Ic is a natural triterpenoid saponin enriched in various Chinese and Japanese natural medicines such as the fruit of Kochia scoparia (L.) Schrad. So far, there is little scientific evidence for momordin Ic with regard to the anti-tumor activities. The aim of this work was to elucidate the anti-tumor effect of momordin Ic and the signal transduction pathways involved. We found that momordin Ic induced apoptosis in human hepatocellular carcinoma HepG2 cells, which were supported by DNA fragmentation, caspase-3 activation and PARP cleavage. Meanwhile, momordin Ic triggered reactive oxygen species (ROS) production together with collapse of mitochondrial membrane potential, cytochrome c release, down-regulation of Bcl-2 and up-regulation of Bax expression. The activation of p38 and JNK, inactivation of Erk1/2 and Akt were also demonstrated. Although ROS production rather than NO was stimulated, the expression of iNOS and HO-1 were altered after momordin Ic treatment for 4 h. Furthermore, the cytochrome c release, caspase-3 activation, Bax/Bcl-2 expression and PARP cleavage were promoted with LY294002 and U0126 intervention but were blocked by SB203580, SP600125, PI3K activator, NAC and 1,400 W pretreatment, demonstrating the mitochondrial disruption. Furthermore, momordin Ic combination with NAC influenced MAPK, PI3K/Akt and HO-1, iNOS pathways, MAPK and PI3K/Akt pathways also regulated the expression of HO-1 and iNOS. These results indicated that momordin Ic induced apoptosis through oxidative stress-regulated mitochondrial dysfunction involving the MAPK and PI3K-mediated iNOS and HO-1 pathways. Thus, momordin Ic might represent a potential source of anticancer candidate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Fattovich G, Stroffolini T, Zagni I, Donato F (2004) Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology 127:35–50

    Article  Google Scholar 

  2. Okuda K (2000) Hepatocellular carcinoma. J Hepatol 32:225–237

    Article  PubMed  CAS  Google Scholar 

  3. Ma S, Jiao B, Liu X, Yi H, Kong D, Gao L, Zhao G, Yang Y, Liu X (2010) Approach to radiation therapy in hepatocellular carcinoma. Cancer Treat Rev 36:157–163

    Article  PubMed  CAS  Google Scholar 

  4. Sloviter RS (2002) Apoptosis: a guide for the perplexed. Trends Pharmacol Sci 23:19–24

    Article  PubMed  CAS  Google Scholar 

  5. Nicholson KM, Anderson NG (2002) The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 14:381–395

    Article  PubMed  CAS  Google Scholar 

  6. Robinson MJ, Cobb MH (1997) Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 9:180–186

    Article  PubMed  CAS  Google Scholar 

  7. Yang XR, Wang YY, La KK, Peng L, Song XH, Shi XG, Zhu XF, Leung PC, Ko CH, Ye CX (2012) Inhibitory effects of cocoa tea (Camellia ptilophylla) in human hepatocellular carcinoma HepG2 in vitro and in vivo through apoptosis. J Nutr Biochem 23:1051–1057

    Article  PubMed  CAS  Google Scholar 

  8. Gong K, Li W (2011) Shikonin, a Chinese plant-derived naphthoquinone, induces apoptosis in hepatocellular carcinoma cells through reactive oxygen species: a potential new treatment for hepatocellular carcinoma. Free Radic Biol Med 51:2259–2271

    Article  PubMed  CAS  Google Scholar 

  9. Chan KT, Meng FY, Li Q, Ho CY, Lam TS, To Y, Lee WH, Li M, Chu KH, Toh M (2010) Cucurbitacin B induces apoptosis and S phase cell cycle arrest in BEL-7402 human hepatocellular carcinoma cells and is effective via oral administration. Cancer Lett 294:118–124

    Article  PubMed  CAS  Google Scholar 

  10. Matsuda H, Li Y, Yoshikawa M (1999) Roles of capsaicin-sensitive sensory nerves, endogenous nitric oxide, sulfhydryls, and prostaglandins in gastroprotection by momordin Ic, an oleanolic acid oligoglycoside, on ethanol-induced gastric mucosal lesions in rats. Life Sci 65:27–32

    Article  Google Scholar 

  11. Matsuda H, Li Y, Yamahara J, Yoshikawa M (1999) Inhibition of gastric emptying by triterpene saponin, momordin Ic, in mice: roles of blood glucose, capsaicin-sensitive sensory nerves, and central nervous system. J Pharmacol Exp Ther 289:729–734

    PubMed  CAS  Google Scholar 

  12. Li Y, Matsuda H, Yamahara J, Yoshikawa M (2000) Acceleration of gastrointestinal transit by momordin Ic in mice: possible involvement of 5-hydroxytryptamine, 5-HT(2) receptors and prostaglandins. Eur J Pharmacol 392:71–77

    Article  PubMed  CAS  Google Scholar 

  13. Kim NY, Lee MK, Park MJ, Kim SJ, Park HJ, Choi JW, Kim SH, Cho SY, Lee JS (2005) Momordin Ic and oleanolic acid from Kochiae Fructus reduce carbon tetrachloride-induced hepatotoxicity in rats. J Med Food 8:177–183

    Article  PubMed  CAS  Google Scholar 

  14. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  15. Nie F, Zhang X, Qi Q, Yang L, Yang Y, Liu W, Lu N, Wu Z, You Q, Guo Q (2009) Reactive oxygen species accumulation contributes to gambogic acid-induced apoptosis in human hepatoma SMMC-7721 cells. Toxicology 260:60–67

    Article  PubMed  CAS  Google Scholar 

  16. Wang QS, Zheng YM, Dong L, Ho YS, Guo Z, Wang YX (2007) Role of mitochondrial reactive oxygen species in hypoxia-dependent increase in intracellular calcium in pulmonary artery myocytes. Free Radic Biol Med 42:642–653

    Article  PubMed  CAS  Google Scholar 

  17. Koo HN, Hong SH, Seo HG, Yoo TS, Lee KN, Kim NS, Kim CH, Kim HM (2003) Inulin stimulates NO synthesis via activation of PKC-α and protein tyrosine kinase, resulting in the activation of NF-κB by IFN-γ-primed RAW 264.7 cells. J Nutr Biochem 14:598–605

    Article  PubMed  CAS  Google Scholar 

  18. Baskić D, Popović S, Ristić P, Arsenijević NN (2006) Analysis of cycloheximide-induced apoptosis in human leukocytes: fluorescence microscopy using annexin V/propidium iodide versus acridin orange/ethidium bromide. Cell Biol Int 30:924–932

    Article  PubMed  Google Scholar 

  19. Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK and p38 protein kinases. Science 298:1911–1912

    Article  PubMed  CAS  Google Scholar 

  20. Maines MD, Gibbs PE (2005) 30 Some years of heme oxygenase: from a “molecular wrecking ball” to a “mesmerizing” trigger of cellular events. Biochem Biophys Res Commun 338:568–577

    Article  PubMed  CAS  Google Scholar 

  21. Kikuchi G, Yoshida T, Noguchi M (2005) Heme oxygenase and heme degradation. Biochem Biophys Res Commun 338:558–567

    Article  PubMed  CAS  Google Scholar 

  22. Li Q, Li W, Hui LP, Zhao CY, He L, Koike K (2012) 13,28-Epoxy triterpenoid saponins from Ardisia japonica selectively inhibit proliferation of liver cancer cells without affecting normal liver cells. Bioorg Med Chem Lett 22:6120–6125

    Article  PubMed  CAS  Google Scholar 

  23. Yu L, Wang X, Wei X, Wang M, Chen L, Cao S, Kang N, Qiu F (2012) Triterpenoid saponins from Xanthoceras sorbifolia Bunge and their inhibitory activity on human cancer cell lines. Bioorg Med Chem Lett 22:5232–5238

    Article  PubMed  CAS  Google Scholar 

  24. Yin Y, Chen W, Tang C, Ding H, Jang J, Weng M, Cai Y, Zou G (2011) NF-κB, JNK and p53 pathways are involved in tubeimoside-1-induced apoptosis in HepG2 cells with oxidative stress and G2/M cell cycle arrest. Food Chem Toxicol 49:3046–3054

    Article  PubMed  CAS  Google Scholar 

  25. Zhao YY, Chao X, Zhang Y, Sun LJ, Zhang H, Lin RC, Shen X, Sun WJ (2010) Cytotoxic activities of tubeimoside-2 on human hepatoma HepG2 cells by induction of G2/M phase arrest and apoptosis in a p53-dependent manner. Apoptosis 15:1549

    Article  Google Scholar 

  26. Han J, Jogie-Brahim S, Harada A, Oh Y (2011) Insulin-like growth factor-binding protein-3 suppresses tumor growth via activation of caspase-dependent apoptosis and cross-talk with NF-κB signaling. Cancer Lett 307:200–210

    Article  PubMed  CAS  Google Scholar 

  27. Nagaraj NS, Anilakumar KR, Singh OV (2010) Diallyl disulfide causes caspase-dependent apoptosis in human cancer cells through a Bax-triggered mitochondrial pathway. J Nutr Biochem 21:405–412

    Article  PubMed  CAS  Google Scholar 

  28. Dewson G, Kluck RM (2009) Mechanisms by which Bak and Bax permeabilise mitochondria during apoptosis. J Cell Sci 122:2801–2808

    Article  PubMed  CAS  Google Scholar 

  29. Teijido O, Dejean L (2010) Upregulation of Bcl-2 inhibits apoptosis-driven BAX insertion but favors BAX relocalization in mitochondria. FEBS Lett 584:3305–3310

    Article  PubMed  CAS  Google Scholar 

  30. Bartosz G (2009) Reactive oxygen species: destroyers or messengers? Biochem Pharmacol 77:1303–1315

    Article  PubMed  CAS  Google Scholar 

  31. Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762

    Article  PubMed  CAS  Google Scholar 

  32. Fleury C, Mignotte B, Vayssière JL (2002) Mitochondrial reactive oxygen species in cell death signaling. Biochimie 84:131–141

    Article  PubMed  CAS  Google Scholar 

  33. Higuchi Y (2003) Chromosomal DNA fragmentation in apoptosis and necrosis induced by oxidative stress. Biochem Pharmacol 66:1527–1535

    Article  PubMed  CAS  Google Scholar 

  34. Bonavida B, Baritaki S (2011) Dual role of NO donors in the reversal of tumor cell resistance and EMT: downregulation of the NF-κB/Snail/YY1/RKIP circuitry. Nitric Oxide 24:1–7

    Article  PubMed  CAS  Google Scholar 

  35. Szanto A, Hellebrand EE, Bognar Z, Tucsek Z, Szabo A, Gallyas FJ, Sumegi B, Varbiro G (2009) PARP-1 inhibition-induced activation of PI-3-kinase-Akt pathway promotes resistance to taxol. Biochem Pharmacol 77:1348–1357

    Article  PubMed  CAS  Google Scholar 

  36. Xing H, Weng D, Chen G, Tao W, Zhu T, Yang X, Meng L, Wang S, Lu Y, Ma D (2008) Activation of fibronectin/PI3K/Akt leads to chemoresistance to docetaxel by regulating survivin protein expression in ovarian and breast cancer cells. Cancer Lett 261:108–119

    Article  PubMed  CAS  Google Scholar 

  37. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38MAP kinases on apoptosis. Science 270:1326–1331

    Article  PubMed  CAS  Google Scholar 

  38. Min L, He B, Hui L (2011) Mitogen-activated protein kinases in hepatocellular carcinoma development. Semin Cancer Biol 21:10–20

    Article  PubMed  CAS  Google Scholar 

  39. Mayerhofer M, Florian S, Krauth MT, Aichberger KJ, Bilban M, Marculescu R, Printz D, Fritsch G, Wagner O, Selzer E, Sperr WR, Valent P, Sillaber C (2004) Identification of heme oxygenase-1 as a novel BCR/ABL-dependent survival factor in chronic myeloid leukemia. Cancer Res 64:3148–3154

    Article  PubMed  CAS  Google Scholar 

  40. Fang J, Sawa T, Akaike T, Akuta T, Sahoo SK, Khaled G, Hamada A, Maeda H (2003) In vivo antitumor activity of pegylated zinc protoporphyrin: targeted inhibition of heme oxygenase in solid tumor. Cancer Res 63:567–3574

    Google Scholar 

  41. Doi K, Akaike T, Fujii S, Tanaka S, Ikebe N, Beppu T, Shibahara S, Ogawa M, Maeda H (1999) Induction of haem oxygenase-1 by nitric oxide and ischaemia in experimental solid tumours and implications for tumour growth. Br J Cancer 80:945–1954

    Article  Google Scholar 

  42. Fang J, Sawa T, Akaike T, Greish K, Maeda H (2004) Enhancement of chemotherapeutic response of tumor cells by a heme oxygenase inhibitor, pegylated zinc protoporphyrin. Int J Cancer 109:1–8

    Article  PubMed  CAS  Google Scholar 

  43. Fang J, Akaike T, Maeda H (2004) Antiapoptotic role of heme oxygenase (HO) and the potential of HO as a target in anticancer treatment. Apoptosis 9:27–35

    Article  PubMed  CAS  Google Scholar 

  44. Sawa T, Mounawar M, Tatemichi M, Gilibert I, Katoh T, Ohshima H (2008) Increased risk of gastric cancer in Japanese subjects is associated with microsatellite polymorphisms in the heme oxygenase-1 and the inducible nitric oxide synthase gene promoters. Cancer Lett 269:78–84

    Article  PubMed  CAS  Google Scholar 

  45. Doi K, Akaike T, Fujii S, Ikebe N, Beppu T, Ogawa M, Maeda H (2003) Heme oxygenase and nitric oxide synthase on tumor growth. Int Congr Ser 1255:265–268

    Article  CAS  Google Scholar 

  46. Hoetzel A, Welle A, Schmidt R, Loop T, Humar M, Ryter SW, Geiger KK, Choi AM, Pannen BH (2008) Nitric oxide-deficiency regulates hepatic heme oxygenase-1. Nitric Oxide 18:61–69

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 31000757).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuebo Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Yuan, L., Xiao, H. et al. Momordin Ic induces HepG2 cell apoptosis through MAPK and PI3K/Akt-mediated mitochondrial pathways. Apoptosis 18, 751–765 (2013). https://doi.org/10.1007/s10495-013-0820-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0820-z

Keywords

Navigation