Skip to main content

Advertisement

Log in

Astragaloside IV prevents acute kidney injury in two rodent models by inhibiting oxidative stress and apoptosis pathways

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Oxidative stress and apoptosis play key role in the pathogenesis of acute kidney injury (AKI). We hypothesize that Astragaloside IV(AS-IV) prevents AKI through inhibiting oxidative stress and apoptosis. The rats were divided into sham control, saline-,vehicle-, or AS-IV-treated groups. AS-IV (20 mg/kg) was orally administered once daily to the rats for 7 consecutive days before terminating the experiments. In ischemia-induced AKI model, experimental rats were subjected to bilateral clamping of the renal arteries for 45 min, followed by reperfusion for 24 h. In contrast-induced AKI model, iopamidol (2.9 g iodine/kg) was administered intravenously into the rats. Renal function, histopathology, oxidative stress and apoptosis were evaluated in these models. Pretreatment with AS-IV significantly decreased blood urea nitrogen, serum creatinine, cystatin C and neutrophil gelatinase-associated lipocalin levels, as well as urinary kidney injury molecule-1 level and tubular injury. AS-IV also reduced oxidative stress and tubular cell apoptosis. The p38 mitogen-activated protein kinase phosphorylation and caspase-3 activity were elevated in kidney tissues from AKI rats, accompanied by an increase in Bax expression and a decrease in Bcl-2 expression at mRNA and protein levels. These changes were prevented by AS-IV pretreatment. Therefore, AS-IV can be developed as a novel therapeutic approach to prevent AKI through targeting inhibition of oxidative stress and apoptosis pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hoste EA, Clermont G, Kersten A, Venkataraman R, Angus DC, De Bacquer D et al (2006) RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis. Crit Care 10:R73

    Article  PubMed  Google Scholar 

  2. Mehta RL, Pascual MT, Soroko S, Savage BR, Himmelfarb J, Ikizler TA et al (2004) Spectrum of acute renal failure in the intensive care unit: the PICARD experience. Kidney Int 66:1613–1621

    Article  PubMed  Google Scholar 

  3. Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S et al (2005) Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 294:813–818

    Article  PubMed  CAS  Google Scholar 

  4. Uchino S, Bellomo R, Goldsmith D, Bates S, Ronco C (2006) An assessment of the RIFLE criteria for acute renal failure in hospitalized patients. Crit Care Med 34:1913–1917

    Article  PubMed  Google Scholar 

  5. Ostermann M, Chang RW (2007) Acute kidney injury in the intensive care unit according to RIFLE. Crit Care Med 35:1837–1843 quiz 1852

    Article  PubMed  Google Scholar 

  6. Ueda N, Kaushal GP, Shah SV (2000) Apoptotic mechanisms in acute renal failure. Am J Med 108:403–415

    Article  PubMed  CAS  Google Scholar 

  7. Gueler F, Gwinner W, Schwarz A, Haller H (2004) Long-term effects of acute ischemia and reperfusion injury. Kidney Int 66:523–527

    Article  PubMed  Google Scholar 

  8. Finn WF (2006) The clinical and renal consequences of contrast-induced nephropathy. Nephrol Dial Transplant 21:i2–i10

    Article  PubMed  Google Scholar 

  9. Tepel M, Aspelin P, Lameire N (2006) Contrast-induced nephropathy: a clinical and evidence-based approach. Circulation 113:1799–1806

    Article  PubMed  Google Scholar 

  10. Mehran R, Nikolsky E (2006) Contrast-induced nephropathy Definition, epidemiology, and patients at risk. Kidney Int Suppl 69:11–15

    Article  Google Scholar 

  11. Goldenberg I, Matetzky S (2005) Nephropathy induced by contrast media: pathogenesis, risk factors and preventive strategies. CMAJ 172:1461–1471

    PubMed  Google Scholar 

  12. Dennen P, Douglas IS, Anderson R (2010) Acute kidney injury in the intensive care unit: an update and primer for the intensivist. Crit Care Med 38(1):261–275

    Article  PubMed  Google Scholar 

  13. Bonegio R, Lieberthal W (2002) Role of apoptosis in the pathogenesis of acute renal failure. Curr Opin Nephrol Hypertens 11:301–308

    Article  PubMed  Google Scholar 

  14. Saikumar P, Venkatachalam MA (2003) Role of apoptosis in hypoxic/ischemic damage in the kidney. Semin Nephrol 23:511–521

    Article  PubMed  CAS  Google Scholar 

  15. Kelly KJ, Plotkin Z, Dagher PC (2001) Guanosine supplementation reduces apoptosis and protects renal function in the setting of ischemic injury. J Clin Invest 108:1291–1298

    PubMed  CAS  Google Scholar 

  16. Kelly KJ, Plotkin Z, Vulgamott SL, Dagher PC (2003) P53 mediates the apoptotic response to GTP depletion after renal ischemia-reperfusion: protective role of a p53 inhibitor. J Am Soc Nephrol 14:128–138

    Article  PubMed  CAS  Google Scholar 

  17. Yano T, Itoh Y, Sendo T, Kubota T, Oishi R (2003) Cyclic AMP reverses radiocontrast media-induced apoptosis in LLC-PK1 cells by activating A kinase/PI3 kinase. Kidney Int 64:2052–2063

    Article  PubMed  CAS  Google Scholar 

  18. Quintavalle C, Brenca M, De Micco F, Fiore D, Romano S, Romano MF (2011) In vivo and in vitro assessment of pathways involved in contrast media-induced renal cells apoptosis. Cell Death Dis 12(2):e155

    Article  Google Scholar 

  19. Havasi A, Borkan SC (2011) Apoptosis and acute kidney injury. Kidney Int 80:29–40

    Article  PubMed  CAS  Google Scholar 

  20. Sun Z, Zhang X, Ito K, Li Y, Montgomery RA, Tachibana S (2008) Amelioration of oxidative mitochondrial DNA damage and deletion after renal ischemic injury by the KATP channel opener diazoxide. Am J Physiol Renal Physiol 294:F491–F498

    Article  PubMed  CAS  Google Scholar 

  21. Chien CT, Chang TC, Tsai CY, Shyue SK, Lai MK (2005) Adenovirus-mediated bcl-2 gene transfer inhibits renal ischemia/reperfusion induced tubular oxidative stress and apoptosis. Am J Transplant 5:1194–1203

    Article  PubMed  CAS  Google Scholar 

  22. Aragno M, Cutrin JC, Mastrocola R, Perrelli MG, Restivo F, Poli G (2003) Oxidative stress and kidney dysfunction due to ischemia/reperfusion in rat: attenuation by dehydroepiandrosterone. Kidney Int 64:836–843

    Article  PubMed  CAS  Google Scholar 

  23. Haeussler U, Riedel M, Keller F (2004) Free reactive oxygen species and nephrotoxicity of contrast agents. Kidney Blood Press Res 27:167–171

    Article  PubMed  CAS  Google Scholar 

  24. Bakris GL, Lass N, Gaber AO (1990) Radiocontrast medium-induced declines in renal function: a role for oxygen free radicals. Am J Physiol 258:F115–F120

    PubMed  CAS  Google Scholar 

  25. Chen J, Gui D, Chen Y, Mou L, Liu Y, Huang J (2008) Astragaloside IV improves high glucose-induced podocyte adhesion dysfunction via α3β1 integrin upregulation and integrin-linked kinase inhibition. Biochem Pharmacol 76:796–804

    Article  PubMed  CAS  Google Scholar 

  26. Qu YZ, Li M, Zhao YL, Zhao ZW, Wei XY, Liu JP et al (2009) Astragaloside IV attenuates cerebral ischemia–reperfusion-induced increase in permeability of the blood-brain barrier in rats. Eur J Pharmacol 15:137–141

    Article  Google Scholar 

  27. Zhang WD, Chen H, Zhang C, Liu RH, Li HL, Chen HZ (2006) Astragaloside IV from Astragalus membranaceus shows cardioprotection during myocardial ischemia in vivo and in vitro. Planta Med 72:4–8

    Article  PubMed  CAS  Google Scholar 

  28. Yu J, Zhang Y, Sun S, Shen J, Qiu J, Yin X (2006) Inhibitory effects of astragaloside IV on diabetic peripheral neuropathy in rats. Can J Physiol Pharmacol 84:579–587

    Article  PubMed  CAS  Google Scholar 

  29. Liang HL, Hilton G, Mortensen J, Regner K, Johnson CP, Nilakantan V (2009) MnTMPyP, a cell-permeant SOD mimetic, reduces oxidative stress and apoptosis following renal ischemia-reperfusion. Am J Physiol Renal Physiol 296:F266–F276

    Article  PubMed  CAS  Google Scholar 

  30. Bird JE, Giancarli MR, Megill JR, Durham SK (1996) Effects of endothelin in radiocontrast-induced nephropathy in rats are mediated through endothelin-A receptors. J Am Soc Nephrol 7:1153–1157

    PubMed  CAS  Google Scholar 

  31. Melnikov VY, Faubel S, Siegmund B, Lucia MS, Ljubanovic D, Edelstein CL (2002) Neutrophil-independent mechanisms of caspase-1- and IL-18-mediated ischemic acute tubular necrosis in mice. J Clin Invest 110:1083–1091

    PubMed  CAS  Google Scholar 

  32. Sun J, Guo W, Ben Y, Jiang J, Tan C, Xu Z et al (2008) Preventive effects of curcumin and dexamethasone on lung transplantation-associated lung injury in rats. Crit Care Med 36:1205–1213

    Article  PubMed  CAS  Google Scholar 

  33. Kumar S, Allen DA, Kieswich JE, Patel NS, Harwood S, Mazzon E (2009) Dexamethasone ameliorates renal ischemia-reperfusion injury. J Am Soc Nephrol 20:2412–2425

    Article  PubMed  CAS  Google Scholar 

  34. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  35. Hizoh I, Haller C (2002) Radiocontrast-induced renal tubular cell apoptosis: hypertonic versus oxidative stress. Invest Radiol 37:428–434

    Article  PubMed  Google Scholar 

  36. Haeussler U, Riedel M, Keller F (2004) Free reactive oxygen species and nephrotoxicity of contrast agents. Kidney Blood Press Res 27:167–171

    Article  PubMed  CAS  Google Scholar 

  37. Matsuda A, Wu R, Jacob A, Komura H, Zhou M, Wang Z (2011) Protective effect of milk fat globule-epidermal growth factor–factor VIII after renal ischemia-reperfusion injury in mice. Crit Care Med 39:2039–2047

    Article  PubMed  CAS  Google Scholar 

  38. Harrois A, Duranteau J (2011) Acute kidney injury: clear the kidney of apoptotic debris! Crit Care Med 39:2180–2181

    Article  PubMed  Google Scholar 

  39. Yokomaku Y, Sugimoto T, Kume S, Araki S, Isshiki K, Chin-Kanasaki M (2008) Asialoerythropoietin prevents contrast-induced nephropathy. J Am Soc Nephrol 19:321–328

    Article  PubMed  CAS  Google Scholar 

  40. Lameire N (2005) The pathophysiology of acute renal failure. Crit Care Clin 21:197–210

    Article  PubMed  Google Scholar 

  41. Lameire N, Van Biesen W, Vanholder R (2005) Acute renal failure. Lancet 365:417–430

    PubMed  CAS  Google Scholar 

  42. Romano G, Briguori C, Quintavalle C, Zanca C, Rivera NV, Colombo A (2008) Contrast agents and renal cell apoptosis. Eur Heart J 29:2569–2576

    Article  PubMed  CAS  Google Scholar 

  43. Zager RA, Johnson AC, Hanson SY (2003) Radiographic contrast media-induced tubular injury: evaluation of oxidant stress and plasma membrane integrity. Kidney Int 64:128–139

    Article  PubMed  CAS  Google Scholar 

  44. Marenzi G, Assanelli E, Campodonico J, Lauri G, Marana I, De Metrio M (2009) Contrast volume during primary percutaneous coronary intervention and subsequent contrast-induced nephropathy and mortality. Ann Intern Med 150:170–177

    PubMed  Google Scholar 

  45. Bayrak O, Bavbek N, Karatas OF, Bayrak R, Catal F, Cimentepe E (2008) Nigella sativa protects against ischaemia/reperfusion injury in rat Kidneys. Nephrol Dial Transplant 23:2206–2212

    Article  PubMed  Google Scholar 

  46. Toprak O, Cirit M, Tanrisev M, Yazici C, Canoz O, Sipahioglu M (2008) Preventive effect of nebivolol on contrast-induced nephropathy in rats. Nephrol Dial Transplant 23:853–859

    Article  PubMed  CAS  Google Scholar 

  47. Chatterjee PK, Cuzzocrea S, Brown PA, Zacharowski K, Stewart KN, Mota-Filipe H (2000) Tempol, a membrane-permeable radical scavenger, reduces oxidant stress-mediated renal dysfunction and injury in the rat. Kidney Int 58:658–673

    Article  PubMed  CAS  Google Scholar 

  48. Chatterjee PK, Patel NS, Kvale EO, Brown PA, Stewart KN, Mota-Filipe H (2004) EUK-134 reduces renal dysfunction and injury caused by oxidative and nitrosative stress of the kidney. Am J Nephrol 24:165–177

    Article  PubMed  CAS  Google Scholar 

  49. Land W, Schneeberger H, Schleibner S, Illner WD, Abendroth D, Rutili G (1994) The beneficial effect of human recombinant superoxide dismutase on acute and chronic rejection events in recipients of cadaveric renal transplants. Transplantation 57:211–217

    Article  PubMed  CAS  Google Scholar 

  50. Okada H, Mak TW (2004) Pathways of apoptotic and non-apoptotic death in tumour cells. Nat Rev Cancer 4:592–603

    Article  PubMed  CAS  Google Scholar 

  51. Ghobrial IM, Witzig TE, Adjei AA (2005) Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin 55:178–194

    Article  PubMed  Google Scholar 

  52. Goodman AI, Olszanecki R, Yang LM, Quan S, Li M, Omura S (2007) Heme oxygenase-1 protects against radiocontrast induced acute kidney injury by regulating anti-apoptotic proteins. Kidney Int 72:945–953

    Article  PubMed  CAS  Google Scholar 

  53. Kaushal GP, Liu L, Kaushal V, Hong X, Melnyk O, Seth R (2004) Regulation of caspase-3 and -9 activation in oxidant stress to RTE by forkhead transcription factors, Bcl-2 proteins, and MAP kinases. Am J Physiol Renal Physiol 287:F1258–F1268

    Article  PubMed  CAS  Google Scholar 

  54. Kim R (2005) Unknotting the roles of Bcl-2 and Bcl-xL in cell death. Biochem Biophys Res Commun 333:336–343

    Article  PubMed  CAS  Google Scholar 

  55. Safirstein R (1997) Renal stress response and acute renal failure. Adv Renal Replace Ther 4:38–42

    CAS  Google Scholar 

  56. di Mari JF, Davis R, Safirstein RL (1999) MAPK activation determines renal epithelial cell survival during oxidative injury. Am J Physiol 277:F195–F203

    PubMed  Google Scholar 

  57. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270:1326–1331

    Article  PubMed  CAS  Google Scholar 

  58. Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239–252

    Article  PubMed  CAS  Google Scholar 

  59. DiMari J, Megyesi J, Udvarhelyi N, Price P, Davis R, Safirstein R (1997) N-Acetyl cysteine ameliorates ischemic renal failure. Am J Physiol 272:292–298

    Google Scholar 

  60. Yin T, Sandhu G, Wolfgang CD, Burrier A, Webb RL, Rigel DF (1997) Tissue-specific pattern of stress kinase activation in ischemic/reperfused heart and kidney. J Biol Chem 272:19943–19950

    Article  PubMed  CAS  Google Scholar 

  61. Pombo CM, Bonventre JV, Avruch J, Woodgett JR, Kyriakis JM, Force T (1994) The stress-activated protein kinases are major c-Jun amino-terminal kinases activated by ischemia and reperfusion. J Biol Chem 269:26546–26551

    PubMed  CAS  Google Scholar 

  62. Hagiwara M, Shen B, Chao L, Chao J (2008) Kallikrein-modified mesenchymal stem cell implantation provides enhanced protection against acute ischemic kidney injury by inhibiting apoptosis and inflammation. Hum Gene Ther 19:807–819

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by grants from National Natural Science Foundation of China, No.81000305 (To Dingkun Gui) and No.30901888 (To Jianhua Huang).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niansong Wang.

Additional information

Dingkun Gui and Jianhua Huang contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gui, D., Huang, J., Liu, W. et al. Astragaloside IV prevents acute kidney injury in two rodent models by inhibiting oxidative stress and apoptosis pathways. Apoptosis 18, 409–422 (2013). https://doi.org/10.1007/s10495-013-0801-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0801-2

Keywords

Navigation