Skip to main content
Log in

The anti-mitotic drug griseofulvin induces apoptosis of human germ cell tumor cells through a connexin 43-dependent molecular mechanism

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Griseofulvin, a widely used antifungal antimitotic drug has been proposed as an anti-tumoral treatment by way of in vitro experiments. Recently, in vivo demonstration of griseofulvin efficacy against multiple myeloma in mice argues for its potential as therapeutics for cancer. Nevertheless, the molecular mechanisms by which griseofulvin disrupts cancerous cell progression are far from being understood. In the present study, we found that griseofulvin inhibits human germ cell tumor cell growth through activation of mitochondrial caspase pathway (caspase 9 and 3) leading to the activation of apoptosis rather than an alteration of cell proliferation. Strikingly, we demonstrated that griseofulvin triggered the expression level of connexin 43 (mRNA and protein), a well described tumor-suppressor gene, known to participate in apoptosis regulation. Consistently, together with microtubule instability, a mechanism classically associated with cell death in response to griseofulvin, we observed a disruption of connexin 43/tubulin association concomitant of an enhanced translocation of connexin 43, or an immunoreactive fragment of the protein, from the cytoplasm to the nucleus. Finally, by using siRNA approaches we demonstrated the requirement of connexin 43 in the apoptotic induction of griseofulvin on our tumor cell model. Altogether, these results described a new molecular mechanism connexin 43-dependent targeted by griseofulvin leading to apoptosis of human germ cell tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. De Carli L, Larizza L (1988) Griseofulvin. Mutat Res 195:91–126

    Article  PubMed  Google Scholar 

  2. Chan Y, Friedlander S (2004) New treatments for tinea capitis. Curr Opin Infect Dis 17:97–103

    Article  PubMed  CAS  Google Scholar 

  3. Vesselinovitch SD, Mihailovich N (1968) The inhibitory effect of griseofulvin on the “promotion” of skin carcinogenesis. Cancer Res 28:2463–2465

    PubMed  CAS  Google Scholar 

  4. Ho Y, Duh J, Jeng J, Wang Y, Liang Y, Lin C, Tseng C, Yu C, Chen R, Lin J (2001) Griseofulvin potentiates antitumorigenesis effects of nocodazole through induction of apoptosis and G2/M cell cycle arrest in human colorectal cancer cells. Int J Cancer 91:393–401

    Article  PubMed  CAS  Google Scholar 

  5. Panda D, Rathinasamy K, Santra MK, Wilson L (2005) Kinetic suppression of microtubule dynamic instability by griseofulvin: implications for its possible use in the treatment of cancer. Proc Natl Acad Sci U S A 102:9878–9883

    Article  PubMed  CAS  Google Scholar 

  6. Kim Y, Alpmann P, Blaum-Feder S, Krämer S, Endo T, Lu D, Carson D, Schmidt-Wolf IG (2011) In vivo efficacy of griseofulvin against multiple myeloma. Leuk Res 35:1070–1073

    Article  PubMed  CAS  Google Scholar 

  7. Rebacz B, Larsen T, Clausen M, Rønnest M, Löffler H, Ho A, Krämer A (2007) Identification of griseofulvin as an inhibitor of centrosomal clustering in a phenotype- based screen. Cancer Res 67:6342–6350

    Article  PubMed  CAS  Google Scholar 

  8. Weber K, Wehland J, Herzog W (1976) Griseofulvin interacts with microtubules both in vivo and in vitro. J Mol Biol 102:817–829

    Article  PubMed  CAS  Google Scholar 

  9. Uen YH, Liu DZ, Weng M, Ho Y, Lin S (2007) NF-kappaB pathway is involved in griseofulvin-induced G2/M arrest and apoptosis in HL-60 cells. J Cell Biochem 101:1165–1175

    Article  PubMed  CAS  Google Scholar 

  10. Rathinasamy K, Jindal B, Asthana J, Singh P, Balaji PV, Panda D (2010) Griseofulvin stabilizes microtubule dynamics, activates p53 and inhibits the proliferation of MCF-7 cells synergistically with vinblastine. BMC Cancer 10:213

    Article  PubMed  Google Scholar 

  11. Rodríguez-Sinovas A, Cabestrero A, López D, Torre I, Morente M, Abellán A, Miró E, Ruiz-Meana M, García-Dorado D (2007) The modulatory effects of connexin 43 on cell death/survival beyond cell coupling. Prog Biophys Mol Biol 94:219–232

    Article  PubMed  Google Scholar 

  12. Leithe E, Sirnes S, Omori Y, Rivedal E (2006) Downregulation of gap junctions in cancer cells. Crit Rev Oncog 12:225–256

    Article  PubMed  Google Scholar 

  13. Pointis G, Fiorini C, Gilleron J, Carette D, Segretain D (2007) Connexins as precocious markers and molecular targets for chemical and pharmacological agents in carcinogenesis. Curr Med Chem 14:2288–2303

    Article  PubMed  CAS  Google Scholar 

  14. Cronier L, Crespin S, Strale PO, Defamie N, Mesnil M (2009) Gap junctions and cancer: new functions for an old story. Antioxid Redox Signal 11:323–338

    Article  PubMed  CAS  Google Scholar 

  15. Qin H, Shao Q, Curtis H, Galipeau J, Belliveau DJ, Wang T, Alaoui-Jamali MA, Laird DW (2002) Retroviral delivery of connexin genes to human breast tumor cells inhibits in vivo tumor growth by a mechanism that is independent of significant gap junctional intercellular communication. J Biol Chem 277:29132–29138

    Article  PubMed  CAS  Google Scholar 

  16. Dai P, Nakagami T, Tanaka H, Hitomi T, Takamatsu T (2007) Cx43 mediates TGF-beta signaling through competitive Smads binding to microtubules. Mol Biol Cell 18:2264–2273

    Article  PubMed  CAS  Google Scholar 

  17. Sun Y, Zhao X, Yao Y, Qi X, Yuan Y, Hu Y (2012) Connexin 43 interacts with Bax to regulate apoptosis of pancreatic cancer through a gap junction-independent pathway. Int J Oncol 41:941–948

    PubMed  CAS  Google Scholar 

  18. Giepmans BN, Verlaan I, Moolenaar WH (2001) Connexin-43 interactions with ZO-1 and alpha- and beta-tubulin. Cell Commun Adhes 8:219–223

    Article  PubMed  CAS  Google Scholar 

  19. Bouskine A, Vega A, Nebout M, Benahmed M, Fénichel P (2010) Expression of embryonic stem cell markers in cultured JKT-1, a cell line derived from a human seminoma. Int J Androl 33:54–63

    Article  PubMed  CAS  Google Scholar 

  20. Carette D, Weider K, Gilleron J, Giese S, Dompierre J, Bergmann M, Brehm R, Denizot JP, Segretain D, Pointis G (2010) Major involvement of connexin 43 in seminiferous epithelial junction dynamics and male fertility. Dev Biol 346:54–67

    Article  PubMed  CAS  Google Scholar 

  21. Fiorini C, Tilloy-Ellul A, Chevalier S, Charuel C, Pointis G (2004) Sertoli cell junctional proteins as early targets for different classes of reproductive toxicants. Reprod Toxicol 18:413–421

    Article  PubMed  CAS  Google Scholar 

  22. Gilleron J, Carette D, Durand P, Pointis G, Segretain D (2009) Connexin 43 a potential regulator of cell proliferation and apoptosis within the seminiferous epithelium. Int J Biochem Cell Biol 41:1381–1390

    Article  PubMed  CAS  Google Scholar 

  23. Mauro V, Volle DH, Chevallier D, Haudebourg J, Sénégas-Balas F, Pointis G (2011) Regenerating I messenger RNA and protein expression in the failing human testis: a potential molecular prognostic marker of seminoma. Hum Pathol 42:1841–1848

    Article  PubMed  CAS  Google Scholar 

  24. Defamie N, Mograbi B, Roger C, Cronier L, Malassine A, Brucker-Davis F, Fenichel P, Segretain D, Pointis G (2001) Disruption of gap junctional intercellular communication by lindane is associated with aberrant localization of connexin43 and zonula occludens-1 in 42GPA9 Sertoli cells. Carcinogenesis 22:1537–1542

    Article  PubMed  CAS  Google Scholar 

  25. Martins FS, Dalmasso G, Arantes RM, Doye A, Lemichez E, Lagadec P, Imbert V, Peyron JF, Rampal P, Nicoli JR, Czerucka D (2010) Interaction of Saccharomyces boulardii with Salmonella enterica serovar Typhimurium protects mice and modifies T84 cell response to the infection. PLoS ONE 5:e8925

    Article  PubMed  Google Scholar 

  26. Gilleron J, Fiorini C, Carette D, Avondet C, Falk MM, Segretain D, Pointis G (2008) Molecular reorganization of Cx43, Zo-1 and Src complexes during the endocytosis of gap junction plaques in response to a non-genomic carcinogen. J Cell Sci 121:4069–4078

    Article  PubMed  CAS  Google Scholar 

  27. Carette D, Gilleron J, Decrouy X, Fiorini C, Diry M, Segretain D, Pointis G (2009) Connexin 33 impairs gap junction functionality by accelerating connexin 43 gap junction plaque endocytosis. Traffic 10:1272–1285

    Article  PubMed  CAS  Google Scholar 

  28. Verbrugge I, Johnstone RW, Smyth MJ (2010) SnapShot: extrinsic apoptosis pathways. Cell 143(1192):e1–e2

    PubMed  Google Scholar 

  29. Roger C, Mograbi B, Chevallier D, Michiels JF, Tanaka H, Segretain D, Pointis G, Fenichel P (2004) Disrupted traffic of connexin 43 in human testicular seminoma cells: overexpression of Cx43 induces membrane location and cell proliferation decrease. J Pathol 202:241–246

    Article  PubMed  CAS  Google Scholar 

  30. Mauro V, Chevallier D, Gilleron J, Defamie N, Carette D, Gasc JM, Senegas-Balas F, Segretain D, Pointis G (2008) Aberrant cytoplasmic accumulation of connexin 43 in human testicular seminoma. Open Biomarkers J 1:20–27

    Article  CAS  Google Scholar 

  31. Quin H, Shao Q, Thomas T, Kalra J, Alaoui-Jamali MA, Laird DW (2003) Connexin26 regulates the expression of angiogenesis-related genes in human breast tumor cells by both GJIC-dependent and -independent mechanisms. Cell Commun Adhes 10:387–393

    Google Scholar 

  32. Kardami E, Dang X, Iacobas DA, Nickel BE, Jeyaraman M, Srisakuldee W, Makazan J, Tanguy S, Spray DC (2007) The role of connexins in controlling cell growth and gene expression. Prog Biophys Mol Biol 94:245–264

    Article  PubMed  CAS  Google Scholar 

  33. Decrock E, Vinken M, De Vuyst E, Krysko DV, D’Herde K, Vanhaecke T, Vandenabeele P, Rogiers V, Leybaert L (2009) Connexin-related signaling in cell death: to live or let die? Cell Death Differ 16:524–536

    Article  PubMed  CAS  Google Scholar 

  34. Stains JP, Civitelli R (2005) Gap junctions regulate extracellular signal-regulated kinase signaling to affect gene transcription. Mol Biol Cell 16:64–72

    Article  PubMed  CAS  Google Scholar 

  35. Mroue RM, El-Sabban ME, Talhouk RS (2011) Connexins and the gap in context. Integr Biol (Camb) 3:255–266

    Article  CAS  Google Scholar 

  36. Huang P, Fan Y, Hossain MZ, Peng A, Zeng L, Boynton AL (1998) Reversion of the neoplastic phenotype of human glioblastoma cells by connexin 43 (cx43). Cancer Res 58:5089–5096

    PubMed  CAS  Google Scholar 

  37. Kalra J, Shao Q, Qin H, Thomas T, Alaoui-Jamali MA, Laird DW (2006) Cx26 inhibits breast MDA-MB-435 cell tumorigenic properties by a gap junctional intercellular communication-independent mechanism. Carcinogenesis 27:2528–2537

    Article  PubMed  CAS  Google Scholar 

  38. Nakashima Y, Ono T, Yamanoi A, El-Assal ON, Kohno H, Nagasue N (2004) Expression of gap junction protein connexin32 in chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. J Gastroenterol 39:763–768

    Article  PubMed  CAS  Google Scholar 

  39. Kanczuga-Koda L, Sulkowski S, Koda M, Sulkowska M (2005) Alterations in connexin26 expression during colorectal carcinogenesis. Oncology 68:217–222

    Article  PubMed  CAS  Google Scholar 

  40. Omori Y, Li Q, Nishikawa Y, Yoshioka T, Yoshida M, Nishimura T, Enomoto K (2007) Pathological significance of intracytoplasmic connexin proteins: implication in tumor progression. J Membr Biol 218:73–77

    Article  PubMed  CAS  Google Scholar 

  41. Hong R, Lim SC (2008) Pathological significance of connexin26 expression in colorectal adenocarcinoma. Oncol Rep 19:913–919

    PubMed  Google Scholar 

  42. Chen SC, Pelletier DB, Ao P, Boynton L (1995) Connexin43 reverses the phenotype of transformed cells and alters their expression of cyclin/cyclin-dependent kinases. Cell Growth Differ 6:681–690

    PubMed  CAS  Google Scholar 

  43. de Feijter AW, Matesic DF, Ruch RJ, Guan X, Chang CC, Trosko JE (1996) Localization and function of the connexin 43 gap-junction protein in normal and various oncogene-expressing rat liver epithelial cells. Mol Carcinog 16:203–212

    Article  PubMed  Google Scholar 

  44. Moorby C, Patel M (2001) Dual functions for connivences: Cx43 regulates growth independently of gap junction formation. Exp Cell Res 271:238–248

    Article  PubMed  CAS  Google Scholar 

  45. Dang X, Doble BW, Kardami E (2003) The carboxy-tail of connexin-43 localizes to the nucleus and inhibits cell growth. Mol Cell Biochem 242:35–38

    Article  PubMed  CAS  Google Scholar 

  46. Mennecier G, Derangeon M, Coronas V, Hervé JC, Mesnil M (2008) Aberrant expression and localization of connexin43 and connexin30 in a rat glioma cell line. Mol Carcinog 47:391–401

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Institut National de la Santé et de la Recherche Médicale (INSERM). The authors would like to thank Laure Gilleron for critically reading the manuscript and Jeannine Colombani for secretarial assistance. We thank Dr D. Volle (INSERM U1103, CNRS UMR 6293, and University of Clermont) for critical advice. DC was a fellowship from ANR (05-PCOD-006-02) and ARC and JG is a doctoral and postdoctoral research fellow of the French Ministry of Research and Technology and of EMBO.

Conflict of interest

The authors disclose no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Pointis.

Additional information

V. Mauro, D. Carette contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mauro, V., Carette, D., Pontier-Bres, R. et al. The anti-mitotic drug griseofulvin induces apoptosis of human germ cell tumor cells through a connexin 43-dependent molecular mechanism. Apoptosis 18, 480–491 (2013). https://doi.org/10.1007/s10495-012-0800-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-012-0800-8

Keywords

Navigation