Skip to main content
Log in

Tetramethylpyrazine induces G0/G1 cell cycle arrest and stimulates mitochondrial-mediated and caspase-dependent apoptosis through modulating ERK/p53 signaling in hepatic stellate cells in vitro

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Activation of hepatic stellate cells (HSCs) is a pivotal event in the pathogenesis of liver fibrosis. Pharmacological induction of HSC apoptosis could be a promising strategy for fibrosis regression. Natural product tetramethylpyrazine (TMP) exhibits potent antifibrotic activities in vivo. However, the molecular mechanisms remain to be defined. The present study aimed at investigating the anti-proliferative and pro-apoptotic effects of TMP on HSCs and elucidating the underlying mechanisms. Our results demonstrated that TMP had no apparent cytotoxic effects on hepatocytes, but significantly inhibited HSC proliferation and induced cell cycle arrest at the G0/G1 checkpoint. These effects were associated with TMP regulation of cyclin D1, p21, p27 and p53. Furthermore, we found that TMP disrupted mitochondrial functions and led to activation of caspase cascades in HSCs. Mechanistic investigations revealed that TMP selectively blocked the extracellular signal-regulated kinase (ERK) signaling and activated p53, which was required for TMP induction of caspase-dependent mitochondrial apoptosis in HSCs. Autodock simulations predicted that TMP could directly bind to ERK2 with two hydrogen bonds and low energy score, indicating that ERK2 could be a direct target molecule for TMP within HSCs. Moreover, TMP altered expression of some marker proteins relevant to HSC activation. These data collectively revealed that TMP modulation of ERK/p53 signaling led to mitochondrial-mediated and caspase-dependent apoptosis in HSCs in vitro. These studies provided mechanistic insights into the antifibrotic properties of TMP that may be exploited as a potential option for hepatic fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

α-SMA:

Alpha smooth muscle actin

ALT:

Alanine aminotransferase

APAP:

N-acetyl-p-aminophenol

AST:

Aspartate aminotransferase

CDKs:

Cyclin-dependent kinases

CKIs:

CDK inhibitors

CPM:

Counts per minute

Cyt c:

Cytochrome c

DMEM:

Dulbecco’s modified eagle medium

DMSO:

Dimethylsulfoxide

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

ERK:

Extracellular signal-regulated kinase

FBS:

Fetal bovine serum

HSC:

Hepatic stellate cell

LDH:

Lactate dehydrogenase

MAPK:

Mitogen-activated protein kinase

MTP:

Mitochondrial transmembrane potential

MTS:

3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfo-phenyl)-2H-tetrazolium

NF-κB:

Nuclear factor-kappa B

PARP-1:

Poly (ADPribose) polymerase-1

PDGF-βR:

Platelet-derived growth factor-β receptor

PI:

Propidium iodide

PI3K:

Phosphoinositide 3-kinase

PPARγ:

Peroxisome proliferator-activated receptor-γ

TdR:

Thymin deoxyriboside

TGF-β:

Transforming growth factor-β

TMP:

Tetramethylpyrazine

References

  1. Friedman SL (2008) Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 88(1):125–172

    Article  PubMed  CAS  Google Scholar 

  2. Hernandez-Gea V, Friedman SL (2011) Pathogenesis of liver fibrosis. Annu Rev Pathol 6:425–456

    Article  PubMed  CAS  Google Scholar 

  3. Thabut D, Shah V (2010) Intrahepatic angiogenesis and sinusoidal remodeling in chronic liver disease: new targets for the treatment of portal hypertension? J Hepatol 53(5):976–980

    Article  PubMed  Google Scholar 

  4. Elsharkawy AM, Oakley F, Mann DA (2005) The role and regulation of hepatic stellate cell apoptosis in reversal of liver fibrosis. Apoptosis 10(5):927–939

    Article  PubMed  CAS  Google Scholar 

  5. Ramachandran P, Iredale JP (2009) Reversibility of liver fibrosis. Ann Hepatol 8(4):283–291

    PubMed  Google Scholar 

  6. Kastan MB, Bartek J (2004) Cell-cycle checkpoints and cancer. Nature 432(7015):316–323

    Article  PubMed  CAS  Google Scholar 

  7. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407(6805):770–776

    Article  PubMed  CAS  Google Scholar 

  8. Kuranaga E (2011) Caspase signaling in animal development. Dev Growth Differ 53(2):137–148

    Article  PubMed  CAS  Google Scholar 

  9. Marone R, Cmiljanovic V, Giese B, Wymann MP (2008) Targeting phosphoinositide 3-kinase: moving towards therapy. Biochim Biophys Acta 1784(1):159–185

    Article  PubMed  CAS  Google Scholar 

  10. Zhang X, Jin B, Huang C (2007) The PI3K/Akt pathway and its downstream transcriptional factors as targets for chemoprevention. Curr Cancer Drug Targ 7(4):305–316

    Article  CAS  Google Scholar 

  11. Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137(3):413–431

    Article  PubMed  CAS  Google Scholar 

  12. Giono LE, Manfredi JJ (2006) The p53 tumor suppressor participates in multiple cell cycle checkpoints. J Cell Physiol 209(1):13–20

    Article  PubMed  CAS  Google Scholar 

  13. Kim EK, Choi EJ (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta 1802(4):396–405

    Article  PubMed  CAS  Google Scholar 

  14. Widmann C, Gibson S, Jarpe MB, Johnson GL (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79(1):143–180

    PubMed  CAS  Google Scholar 

  15. Lu B, Yu L, Li S, Si S, Zeng Y (2010) Alleviation of CCl4-induced cirrhosis in rats by tetramethylpyrazine is associated with downregulation of leptin and TGF-beta1 pathway. Drug Chem Toxicol 33(3):310–315

    Article  PubMed  CAS  Google Scholar 

  16. Chen W, Chen WX, Jin Y, Lu YM (2010) Effect of ligustrazine on the expression of TNF-α, IL-4 and IFN-γ in rats with liver fibrosis. World Clin Drug 31(3):153–156

    CAS  Google Scholar 

  17. Yu LM, Si SY, Li SG, Meng LN, Lu B (2008) Mechanism of preventive and therapeutic effects of tetramethylpyrazine on liver fibrosis in rats: effects on expression of TGF-β1, Smad3, Smad7 and leptin. Chin J Gastroenterol Hepatol 17(10):798–801

    CAS  Google Scholar 

  18. Chen W, Chen WW, Lu YM, Chen JL, Yao HX (2007) Experimental studies on the therapeutic effects of ligustrazine on liver fibrosis in rats. World Clin Drug 28(9):522–525

    CAS  Google Scholar 

  19. Chakraborty JB, Oakley F, Walsh MJ (2012) Mechanisms and biomarkers of apoptosis in liver disease and fibrosis. Int J Hepatol 2012:648915

    PubMed  Google Scholar 

  20. Guicciardi ME, Gores GJ (2010) Apoptosis as a mechanism for liver disease progression. Semin Liver Dis 30(4):402–410

    Article  PubMed  CAS  Google Scholar 

  21. Chen A (2002) Acetaldehyde stimulates the activation of latent transforming growth factor-beta1 and induces expression of the type II receptor of the cytokine in rat cultured hepatic stellate cells. Biochem J 368(Pt 3):683–693

    Article  PubMed  CAS  Google Scholar 

  22. Nourissat P, Travert M, Chevanne M, Tekpli X, Rebillard A, Le Moigne-Muller G et al (2008) Ethanol induces oxidative stress in primary rat hepatocytes through the early involvement of lipid raft clustering. Hepatology 47(1):59–70

    Article  PubMed  CAS  Google Scholar 

  23. Lybrand TP (1995) Ligand-protein docking and rational drug design. Curr Opin Struct Biol 5(2):224–228

    Article  PubMed  CAS  Google Scholar 

  24. Cosconati S, Forli S, Perryman AL, Harris R, Goodsell DS, Olson AJ (2010) Virtual screening with AutoDock: theory and practice. Expert Opin Drug Discov 5(6):597–607

    Article  PubMed  CAS  Google Scholar 

  25. Malhi H, Guicciardi ME, Gores GJ (2010) Hepatocyte death: a clear and present danger. Physiol Rev 90(3):1165–1194

    Article  PubMed  CAS  Google Scholar 

  26. Mahadevan SB, McKiernan PJ, Davies P, Kelly DA (2006) Paracetamol induced hepatotoxicity. Arch Dis Child 91(7):598–603

    Article  PubMed  CAS  Google Scholar 

  27. Friedman SL (2004) Stellate cells: a moving target in hepatic fibrogenesis. Hepatology 40(5):1041–1043

    Article  PubMed  CAS  Google Scholar 

  28. Gomez-Lechon MJ, O’Connor JE, Lahoz A, Castell JV, Donato MT (2008) Identification of apoptotic drugs: multiparametric evaluation in cultured hepatocytes. Curr Med Chem 15(20):2071–2085

    Article  PubMed  CAS  Google Scholar 

  29. Geng Y, Yu Q, Sicinska E, Das M, Schneider JE, Bhattacharya S et al (2003) Cyclin E ablation in the mouse. Cell 114(4):431–443

    Article  PubMed  CAS  Google Scholar 

  30. Maddika S, Ande SR, Panigrahi S, Paranjothy T, Weglarczyk K, Zuse A et al (2007) Cell survival, cell death and cell cycle pathways are interconnected: implications for cancer therapy. Drug Resist Updat 10(1–2):13–29

    Article  PubMed  CAS  Google Scholar 

  31. Wang C, Youle RJ (2009) The role of mitochondria in apoptosis*. Annu Rev Genet 43:95–118

    Article  PubMed  CAS  Google Scholar 

  32. Kuwana T, Newmeyer DD (2003) Bcl-2-family proteins and the role of mitochondria in apoptosis. Curr Opin Cell Biol 15(6):691–699

    Article  PubMed  CAS  Google Scholar 

  33. Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR (2010) The BCL-2 family reunion. Mol Cell 37(3):299–310

    Article  PubMed  CAS  Google Scholar 

  34. Soldani C, Scovassi AI (2002) Poly(ADP-ribose) polymerase-1 cleavage during apoptosis: an update. Apoptosis 7(4):321–328

    Article  PubMed  CAS  Google Scholar 

  35. Fan M, Chambers TC (2001) Role of mitogen-activated protein kinases in the response of tumor cells to chemotherapy. Drug Resist Updat 4(4):253–267

    Article  PubMed  CAS  Google Scholar 

  36. Park JJ, Yi JY, Jin YB, Lee YJ, Lee JS, Lee YS et al (2012) Sialylation of epidermal growth factor receptor regulates receptor activity and chemosensitivity to gefitinib in colon cancer cells. Biochem Pharmacol 83(7):849–857

    Article  PubMed  CAS  Google Scholar 

  37. Nakakuki T, Birtwistle MR, Saeki Y, Yumoto N, Ide K, Nagashima T et al (2010) Ligand-specific c-Fos expression emerges from the spatiotemporal control of ErbB network dynamics. Cell 141(5):884–896

    Article  PubMed  CAS  Google Scholar 

  38. Giambartolomei S, Covone F, Levrero M, Balsano C (2001) Sustained activation of the Raf/MEK/Erk pathway in response to EGF in stable cell lines expressing the Hepatitis C Virus (HCV) core protein. Oncogene 20(20):2606–2610

    Article  PubMed  CAS  Google Scholar 

  39. Dar AC, Shokat KM (2011) The evolution of protein kinase inhibitors from antagonists to agonists of cellular signaling. Annu Rev Biochem 80:769–795

    Article  PubMed  CAS  Google Scholar 

  40. Zhou Y, Zheng S, Lin J, Zhang QJ, Chen A (2007) The interruption of the PDGF and EGF signaling pathways by curcumin stimulates gene expression of PPARgamma in rat activated hepatic stellate cell in vitro. Lab Invest 87(5):488–498

    Article  PubMed  CAS  Google Scholar 

  41. Zhang F, Lu Y, Zheng S (2012) Peroxisome proliferator-activated receptor-gamma cross-regulation of signaling events implicated in liver fibrogenesis. Cell signal 24(3):596–605

    Article  PubMed  CAS  Google Scholar 

  42. Liu CF, Lin CC, Ng LT, Lin SC (2002) Hepatoprotective and therapeutic effects of tetramethylpyrazine on acute econazole-induced liver injury. Planta Med 68(6):510–514

    Article  PubMed  CAS  Google Scholar 

  43. Chen Z, Huo JR, Yang L, Zhu HY (2011) Effect of ligustrazine on mice model of hepatic veno-occlusive disease induced by Gynura segetum. J Gastroenterol Hepatol 26(6):1016–1021

    Article  PubMed  CAS  Google Scholar 

  44. Liu ZQ, Li XS, Tan LX, Liu LY (2004) The effect of ligustrazine on hepatocyte apoptosis. Chin J Integr Tradit West Med Liver Dis 14(5):281–283

    Google Scholar 

  45. Tsai TH, Liang C (2001) Pharmacokinetics of tetramethylpyrazine in rat blood and brain using microdialysis. Int J Pharm 216(1–2):61–66

    Article  PubMed  CAS  Google Scholar 

  46. Nevzorova YA, Bangen JM, Hu W, Haas U, Weiskirchen R, Gassler N et al (2012) Cyclin E1 controls proliferation of hepatic stellate cells and is essential for liver fibrogenesis in mice. Hepatology 56(3):1140–1149

    Article  PubMed  CAS  Google Scholar 

  47. Park MT, Lee SJ (2003) Cell cycle and cancer. J Biochem Mol Biol 36(1):60–65

    Article  PubMed  CAS  Google Scholar 

  48. Roos WP, Kaina B (2006) DNA damage-induced cell death by apoptosis. Trends Mol Med 12(9):440–450

    Article  PubMed  CAS  Google Scholar 

  49. Khosravi-Far R, Esposti MD (2004) Death receptor signals to mitochondria. Cancer Biol Ther 3(11):1051–1057

    Article  PubMed  CAS  Google Scholar 

  50. Wright MC, Issa R, Smart DE, Trim N, Murray GI, Primrose JN et al (2001) Gliotoxin stimulates the apoptosis of human and rat hepatic stellate cells and enhances the resolution of liver fibrosis in rats. Gastroenterology 121(3):685–698

    Article  PubMed  CAS  Google Scholar 

  51. Dekel R, Zvibel I, Brill S, Brazovsky E, Halpern Z, Oren R (2003) Gliotoxin ameliorates development of fibrosis and cirrhosis in a thioacetamide rat model. Dig Dis Sci 48(8):1642–1647

    Article  PubMed  CAS  Google Scholar 

  52. Kweon YO, Paik YH, Schnabl B, Qian T, Lemasters JJ, Brenner DA (2003) Gliotoxin-mediated apoptosis of activated human hepatic stellate cells. J Hepatol 39(1):38–46

    Article  PubMed  CAS  Google Scholar 

  53. Hagens WI, Olinga P, Meijer DK, Groothuis GM, Beljaars L, Poelstra K (2006) Gliotoxin non-selectively induces apoptosis in fibrotic and normal livers. Liver Int 26(2):232–239

    Article  PubMed  CAS  Google Scholar 

  54. Harris SL, Levine AJ (2005) The p53 pathway: positive and negative feedback loops. Oncogene 24(17):2899–2908

    Article  PubMed  CAS  Google Scholar 

  55. She QB, Bode AM, Ma WY, Chen NY, Dong Z (2001) Resveratrol-induced activation of p53 and apoptosis is mediated by extracellular-signal-regulated protein kinases and p38 kinase. Cancer Res 61(4):1604–1610

    PubMed  CAS  Google Scholar 

  56. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F et al (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 1773(8):1263–1284

    Article  PubMed  CAS  Google Scholar 

  57. Brantley-Finley C, Lyle CS, Du L, Goodwin ME, Hall T, Szwedo D et al (2003) The JNK, ERK and p53 pathways play distinct roles in apoptosis mediated by the antitumor agents vinblastine, doxorubicin, and etoposide. Biochem Pharmacol 66(3):459–469

    Article  PubMed  CAS  Google Scholar 

  58. Zheng S, Chen A (2004) Activation of PPARgamma is required for curcumin to induce apoptosis and to inhibit the expression of extracellular matrix genes in hepatic stellate cells in vitro. Biochem J 384(Pt 1):149–157

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The financial support was from National Natural Science Foundation of China (81270514, 30873424), Doctoral Discipline Foundation of Ministry of Education of China (20103237110010), Jiangsu Natural Science Foundation (BK2008456), Project for Supporting Jiangsu Provincial Talents in Six Fields (2009-B-010), Open Program of Jiangsu Key Laboratory of Integrated Acupuncture and Drugs (KJA200801), Open Project Program of National First-Class Key Discipline for Traditional Chinese Medicine of Nanjing University of Chinese Medicine (2011ZYX4-008), and the ‘‘Eleven-Five’’ National Science and Technology Supporting Program (2008BAI51B02). We are grateful to Dr. Lei Zhang (Anhui Provincial Hospital, China) and Dr. Fangtian Fan (Nanjing University of Chinese Medicine, China) for assistance in experiments, and to Professor Shile Huang (Louisiana State University Health Sciences Center, USA) for insightful discussion and suggestions.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Zhong Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F., Kong, DS., Zhang, ZL. et al. Tetramethylpyrazine induces G0/G1 cell cycle arrest and stimulates mitochondrial-mediated and caspase-dependent apoptosis through modulating ERK/p53 signaling in hepatic stellate cells in vitro. Apoptosis 18, 135–149 (2013). https://doi.org/10.1007/s10495-012-0791-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-012-0791-5

Keywords

Navigation