, Volume 18, Issue 2, pp 238–247 | Cite as

An in vivo molecular imaging probe 18F-Annexin B1 for apoptosis detection by PET/CT: preparation and preliminary evaluation

  • Ming-Wei Wang
  • Fang Wang
  • Yu-Jia Zheng
  • Ying-Jian Zhang
  • Yong-Ping Zhang
  • Qing Zhao
  • Clifton Kwang-Fu Shen
  • Yue Wang
  • Shu-Han Sun
Original Paper


There is an increasing need to develop non-invasive molecular imaging strategies for visualizing and quantifying apoptosis status of diseases (especially for cancer) for diagnosis and monitoring treatment response. Since externalization of phosphatidylserine (PS) is one of the early molecular events during apoptosis, Annexin B1 (AnxB1), a member of Annexins family with high affinity toward the head group of PS, could be a potential positron emission tomography (PET) imaging probe for imaging cell death process after labeled by positron-emitting nuclides, such as 18F. In the present study, we investigated a novel PET probe, 18F-labeled Annexin B1 (18F-AnxB1), for apoptosis imaging. 18F-AnxB1 was prepared reliably by conjugating AnxB1 with a 18F-tag, N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB), in a radiolabeling yield of about 20 % within 40 min. The in vitro binding of 18F-AnxB1 with apoptotic cells induced by anti-Fas antibody showed twofold increase compared to those without treatment, confirmed by flow cytometric analysis with AnxV-FITC/PI staining. Stability tests demonstrated 18F-AnxB1 was rather stable in vitro and in vivo without degradation. The serial 18F-AnxB1 PET/CT scans in healthy rats outlined its biodistribution and pharmacokinetics, indicating a rapid renal clearance and predominant accumulation into kidney and bladder at 2 h p.i. 18F-AnxB1 PET/CT imaging was successfully applied to visualize in vivo apoptosis sites in tumor induced by chemotherapy and in kidney simulated by ischemia–reperfusion injury. The high-contrast images were obtained at 2 h p.i. to delineate apoptotic tumor. Apoptotic region could be still identified by 18F-AnxB1 PET 4 h p.i., despite the high probe retention in kidneys. In summary, we have developed 18F-AnxB1 as a PS-specific PET probe for the apoptosis detection and quantification which could have broad applications from disease diagnosis to treatment monitoring, especially in the cases of cancer.


Apoptosis imaging 18F-Annexin B1 18F-radiolabeling Molecular imaging probe PET 

Supplementary material

10495_2012_788_MOESM1_ESM.docx (2.7 mb)
Supplementary material 1 (DOCX 2,768 kb)


  1. 1.
    Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462PubMedCrossRefGoogle Scholar
  2. 2.
    Kerr JF, Winterford CM, Harmon BV (1994) Apoptosis. Its significance in cancer and cancer therapy. Cancer 73:2013–2026PubMedCrossRefGoogle Scholar
  3. 3.
    Evan GI, Vousden KH (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411:342–348PubMedCrossRefGoogle Scholar
  4. 4.
    Kapty J, Murray D, Mercer J (2010) Radiotracers for noninvasive molecular imaging of tumor cell death. Cancer Biother Radiopharm 25:615–628PubMedCrossRefGoogle Scholar
  5. 5.
    Niu G, Chen X (2010) Apoptosis imaging: beyond annexin V. J Nucl Med 51:1659–1662PubMedCrossRefGoogle Scholar
  6. 6.
    Blankenberg FG, Strauss HW (2001) Will imaging of apoptosis play a role in clinical care? A tale of mice and men. Apoptosis 6:117–123PubMedCrossRefGoogle Scholar
  7. 7.
    Blankenberg FG, Tait J, Ohtsuki K, Strauss HW (2000) Apoptosis: the importance of nuclear medicine. Nucl Med Commun 21:241–250PubMedCrossRefGoogle Scholar
  8. 8.
    Reshef A, Shirvan A, Akselrod-Ballin A, Wall A, Ziv I (2010) Small-molecule biomarkers for clinical PET imaging of apoptosis. J Nucl Med 51:837–840PubMedCrossRefGoogle Scholar
  9. 9.
    Kartachova MS, Verheij M, van Eck BL, Hoefnagel CA, Olmos RA (2008) Radionuclide imaging of apoptosis in malignancies: promise and pitfalls of 99mTc-Hynic-rh-Annexin V imaging. Clin Med Oncol 2:319–325PubMedGoogle Scholar
  10. 10.
    Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776PubMedCrossRefGoogle Scholar
  11. 11.
    Schutters K, Reutelingsperger C (2010) Phosphatidylserine targeting for diagnosis and treatment of human diseases. Apoptosis 15:1072–1082PubMedCrossRefGoogle Scholar
  12. 12.
    Burtea C, Laurent S, Lancelot E et al (2009) Peptidic targeting of phosphatidylserine for the MRI detection of apoptosis in atherosclerotic plaques. Mol Pharm 6:1903–1919PubMedCrossRefGoogle Scholar
  13. 13.
    Lahorte CM, Vanderheyden JL, Steinmetz N, Van de Wiele C, Dierckx RA, Slegers G (2004) Apoptosis-detecting radioligands: current state of the art and future perspectives. Eur J Nucl Med Mol Imaging 31:887–919PubMedCrossRefGoogle Scholar
  14. 14.
    Belhocine TZ, Tait JF, Vanderheyden JL, Li C, Blankenberg FG (2004) Nuclear medicine in the era of genomics and proteomics: lessons from annexin V. J Proteome Res 3:345–349PubMedCrossRefGoogle Scholar
  15. 15.
    Boersma HH, Kietselaer BL, Stolk LM et al (2005) Past, present, and future of annexin A5: from protein discovery to clinical applications. J Nucl Med 46:2035–2050PubMedGoogle Scholar
  16. 16.
    Blankenberg FG, Katsikis PD, Tait JF et al (1998) In vivo detection and imaging of phosphatidylserine expression during programmed cell death. Proc Natl Acad Sci USA 95:6349–6354PubMedCrossRefGoogle Scholar
  17. 17.
    Yagle KJ, Eary JF, Tait JF et al (2005) Evaluation of 18F-annexin V as a PET imaging agent in an animal model of apoptosis. J Nucl Med 46:658–666PubMedGoogle Scholar
  18. 18.
    Toretsky J, Levenson A, Weinberg IN, Tait JF, Uren A, Mease RC (2004) Preparation of F-18 labeled annexin V: a potential PET radiopharmaceutical for imaging cell death. Nucl Med Biol 31:747–752PubMedCrossRefGoogle Scholar
  19. 19.
    Keen HG, Dekker BA, Disley L et al (2005) Imaging apoptosis in vivo using 124I-annexin V and PET. Nucl Med Biol 32:395–402PubMedCrossRefGoogle Scholar
  20. 20.
    Hu S, Kiesewetter DO, Zhu L et al (2012) Longitudinal PET imaging of doxorubicin-induced cell death with 18F-Annexin V. Mol Imaging Biol 14:762–770PubMedCrossRefGoogle Scholar
  21. 21.
    Grierson JR, Yagle KJ, Eary JF et al (2004) Production of [F-18]fluoroannexin for imaging apoptosis with PET. Bioconjug Chem 15:373–379PubMedCrossRefGoogle Scholar
  22. 22.
    Bauwens M, De Saint-Hubert M, Devos E et al (2011) Site-specific 68Ga-labeled Annexin A5 as a PET imaging agent for apoptosis. Nucl Med Biol 38:381–392PubMedCrossRefGoogle Scholar
  23. 23.
    Zhang Y, Guo YJ, Sun SH, Yan HL, He Y (2004) Non-fusion expression in Escherichia coli, purification, and characterization of a novel Ca2+− and phospholipid-binding protein annexin B1. Protein Expr Purif 34:68–74PubMedCrossRefGoogle Scholar
  24. 24.
    Wang F, Luo QY, He Y, Sun SH (2007) Screening, purification, and identification of annexin B1 mutants with high phosphatidylserine-binding activity and reduced immunogenicity. Appl Microbiol Biotechnol 75:539–548PubMedCrossRefGoogle Scholar
  25. 25.
    Luo QY, Zhang ZY, Wang F, Lu HK, Guo YZ, Zhu RS (2005) Preparation, in vitro and in vivo evaluation of 99mTc-Annexin B1: a novel radioligand for apoptosis imaging. Biochem Biophys Res Commun 335:1102–1106PubMedCrossRefGoogle Scholar
  26. 26.
    Luo QY, Wang F, Zhang ZY et al (2008) Preparation and bioevaluation of 99mTc-HYNIC-annexin B1 as a novel radioligand for apoptosis imaging. Apoptosis 13:600–608PubMedCrossRefGoogle Scholar
  27. 27.
    Ding FX, Yan HL, Mei Q et al (2007) A novel, cheap and effective fusion expression system for the production of recombinant proteins. Appl Microbiol Biotechnol 77:483–488PubMedCrossRefGoogle Scholar
  28. 28.
    Hoglund J, Shirvan A, Antoni G et al (2011) 18F-ML-10, a PET tracer for apoptosis: first human study. J Nucl Med 52:720–725PubMedCrossRefGoogle Scholar
  29. 29.
    Allen A, Ben-Ami M, Reshef A et al (2012) Assessment of response of brain metastases to radiotherapy by PET imaging of apoptosis with 18F-ML-10. Eur J Nucl Med Mol Imaging 39:1400–1408PubMedCrossRefGoogle Scholar
  30. 30.
    Reshef A, Shirvan A, Waterhouse RN et al (2008) Molecular imaging of neurovascular cell death in experimental cerebral stroke by PET. J Nucl Med 49:1520–1528PubMedCrossRefGoogle Scholar
  31. 31.
    Edgington LE, Berger AB, Blum G et al (2009) Noninvasive optical imaging of apoptosis by caspase-targeted activity-based probes. Nat Med 15:967–973PubMedCrossRefGoogle Scholar
  32. 32.
    Murakami Y, Takamatsu H, Taki J et al (2004) 18F-labelled annexin V: a PET tracer for apoptosis imaging. EurJ Nucl Med Mol Imaging 31:469–474CrossRefGoogle Scholar
  33. 33.
    Li X, Link JM, Stekhova S et al (2008) Site-specific labeling of annexin V with F-18 for apoptosis imaging. Bioconjug Chem 19:1684–1688PubMedCrossRefGoogle Scholar
  34. 34.
    Kapty J, Kniess T, Wuest F, Mercer JR (2011) Radiolabeling of phosphatidylserine-binding peptides with prosthetic groups N-[6-(4-[18F]fluorobenzylidene)aminooxyhexyl]maleimide ([18F]FBAM) and N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB). Appl Radiat Isot 69:1218–1225PubMedCrossRefGoogle Scholar
  35. 35.
    Wang M-W, Zhang Y-P, Zhang Y-J, Shen C (2011) Module-assisted one-pot synthesis of [18F]SFB for radiolabeling proteins. J Radioanal Nucl Chem 289:191–196CrossRefGoogle Scholar
  36. 36.
    Vaidyanathan G, Zalutsky M (1992) Labeling proteins with fluorine-18 using N-succinimidyl 4-[18F]fluorobenzoate. Int J Rad Appl Instrum Part B Nucl Med Biol 19:275–281CrossRefGoogle Scholar
  37. 37.
    Gottlieb RA, Nordberg J, Skowronski E, Babior BM (1996) Apoptosis induced in Jurkat cells by several agents is preceded by intracellular acidification. Proc Natl Acad Sci USA 93:654–658PubMedCrossRefGoogle Scholar
  38. 38.
    Zhao Q, Zhang Y, Wang F et al (2011) Evaluation of 18F-SFB-Annexin B1 in detecting apoptosis. Chin J Nucl Med 31:112–116Google Scholar
  39. 39.
    Gonzalez Trotter DE, Manjeshwar RM, Doss M et al (2004) Quantitation of small-animal 124I activity distributions using a clinical PET/CT scanner. J Nucl Med 45:1237–1244PubMedGoogle Scholar
  40. 40.
    Aide N, Desmonts C, Beauregard JM et al (2010) High throughput static and dynamic small animal imaging using clinical PET/CT: potential preclinical applications. Eur J Nucl Med Mol Imaging 37:991–1001PubMedCrossRefGoogle Scholar
  41. 41.
    Gremse F, Schulz V (2011) Qualitative and quantitative data analysis. In: Kiessling F, Pichler BJ (eds) Small animal imaging. Springer, Berlin/Heidelberg, pp 363–378CrossRefGoogle Scholar
  42. 42.
    Mingwei W, Yujia Z, Zhang Y, Yingjian Z (2012) Cancer apoptosis detection by 18F-Annexin B1 and 18F-Annexin V PET/CT imaging: a comparative study. J Nucl Med 53(S1):1700Google Scholar
  43. 43.
    Shreve PD, Anzai Y, Wahl RL. (1999) Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. Radiographics 19:61–77; quiz 150–151Google Scholar
  44. 44.
    Sterin-Speziale N, Kahane V, Setton C, Fernandez M, Speziale E (1992) Compartmental study of rat renal phospholipid metabolism. Lipids 27:10–14PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Ming-Wei Wang
    • 1
    • 2
    • 3
  • Fang Wang
    • 4
  • Yu-Jia Zheng
    • 1
    • 2
    • 3
  • Ying-Jian Zhang
    • 1
    • 2
    • 3
  • Yong-Ping Zhang
    • 1
    • 2
    • 3
  • Qing Zhao
    • 1
    • 2
  • Clifton Kwang-Fu Shen
    • 5
    • 6
    • 7
  • Yue Wang
    • 4
  • Shu-Han Sun
    • 4
  1. 1.PET Center, Department of Nuclear MedicineFudan University Shanghai Cancer CenterShanghaiChina
  2. 2.Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
  3. 3.The Joint Center for Biomedical Imaging of Department of Chemistry & Institute of Biomedical Science & Shanghai Cancer CenterFudan UniversityShanghaiChina
  4. 4.Department of Medical GeneticsSecond Military Medical University (SMMU)ShanghaiChina
  5. 5.Department of Molecular and Medical PharmacologyDavid Geffen School of Medicine at University of California Los Angeles (UCLA)Los AngelesUSA
  6. 6.Crump Institute for Molecular Imaging (CIMI)David Geffen School of Medicine at University of California Los Angeles (UCLA)Los AngelesUSA
  7. 7.California NanoSystems Institute (CNSI)University of California Los Angeles (UCLA)Los AngelesUSA

Personalised recommendations