Skip to main content

Advertisement

Log in

Apoptosis in Down’s syndrome: lessons from studies of human and mouse models

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Down syndrome (DS) is the most common chromosomal abnormality in humans. DS is characterized by a number of phenotypes, including the development of Alzheimer’s disease-like pathology and immunological, hematological and cardiovascular alterations. Apoptosis or programmed cell death is physiologically involved in development and aging, as well as in numerous pathological processes. Altered apoptosis has been proposed as a putative mechanism underlying many DS phenotypes. Evidence from human and animal studies indicates that apoptosis does not have a prominent role in the disturbances found in brain development in trisomy 21. However, alterations in apoptosis have been associated with neurodegeneration in the aging DS brain, with impairments in general growth and with immunological, cardiovascular and oncological alterations. Altered apoptosis in DS is likely to be the result of the interplay between several chromosome 21 (Hsa21) and non-Hsa21 genes. The interplay between these genes may affect physiological programmed cell death either directly, by modifying the activity of the apoptotic pathways, or indirectly, by inducing degeneration and rendering the cell more vulnerable to apoptosis-inducing factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shin M, Besser LM, Kucik JE, Lu C, Siffel C, Correa A (2009) Prevalence of Down syndrome among childrent and adolescent in 10 regions of the United States. Pediatrics 124:1565–1571

    Article  PubMed  Google Scholar 

  2. Nadel L (2003) Down’s syndrome: a genetic disorder in biobehavioral perspective. Genes Brain Behav 2:156–166

    Article  PubMed  CAS  Google Scholar 

  3. Vicari S (2004) Memory development and intellectual disabilities. Acta Pediatr 93:60–64

    Article  CAS  Google Scholar 

  4. Cenini G, Dowling AL, Beckett TL, Barone E, Mancuso C, Murphy MP, Levine H, Lott IT, Schmitt FA, Butterfield DA, Head E (2012) Association between frontal cortex oxidative damage and beta-amyloid as a function of age in Down syndrome. Biochem Biophys Acta 1822:130–138

    Article  PubMed  CAS  Google Scholar 

  5. Sabbagh MN, Fleisher A, Chen K, Rogers J, Berk C, Reiman E, Pontecorvo M, Mintun M, Skovronsky D, Jacobson SA, Sue LI, Liebsack C, Charney AS, Cole L, Belden C, Beach TG (2011) Positron emission tomography and neuropathologic estimates of fibrillar amyloid-β in a patient with Down syndrome and Alzheimer disease. Arch Neurol 68:1461–1466

    Article  PubMed  Google Scholar 

  6. Levin S, Schesinger M, Handzel Z, Hahn T, Altman Y, Czernobilsky B, Boss J (1979) Thymic deficiency in Down’s syndrome. Pediatrics 63:80–87

    PubMed  CAS  Google Scholar 

  7. Roizen NJ, Amarose AP (1993) Hematologic abnormalities in children with Down syndrome. Am J Med Genet 46:510–512

    Article  PubMed  CAS  Google Scholar 

  8. McElhinney DB, Straka M, Goldmuntz E, Zackai EH (2002) Correlation between abnormal cardiac physical examination and echocardiographic findings in neonates with Down syndrome. Am J Med Genet 113:238–241

    Article  PubMed  Google Scholar 

  9. Roizen NJ, Patterson D (2003) Down’s syndrome. Lancet 361:1281–1289

    Article  PubMed  Google Scholar 

  10. Gurbuxani S, Vyas P, Crispino JD (2004) Recent insights into the mechanisms of myeloid leukemogenesis in Down syndrome. Blood 103:399–406

    Article  PubMed  CAS  Google Scholar 

  11. Bartesaghi R, Guidi S, Ciani E (2011) Is it possible to improve neurodevelopmental abnormalities in Down syndrome? Rev Neurosci 22:419–455

    PubMed  Google Scholar 

  12. Rueda N, Flórez J, Martínez-Cué C (2012) Mouse models of Down syndrome as a tool to unravel the causes of mental disabilities. Neural Plast 2012:584071

    Article  PubMed  Google Scholar 

  13. Gropp A, Kolbus U, Giers D (1975) Systematic approach to the study of trisomy in the mouse. II. Cytogenet Cell Genet 14:42–62

    Article  PubMed  CAS  Google Scholar 

  14. Sturgeon X, Gardiner KJ (2011) Transcript catalogs of human chromosome 21 and orthologous chimpanzee and mouse regions. Mamm Genome 22:261–271

    Article  PubMed  Google Scholar 

  15. Sago H, Carlson EJ, Smith DJ, Kilbridge J, Rubin EM, Mobley WC, Epstein CJ, Huang TT (1998) Ts1Cje, a partial trisomy 16 mouse model for Down syndrome, exhibits learning and behavioral abnormalities. Proc Natl Acad Sci USA 95(11):6256–6261

    Article  PubMed  CAS  Google Scholar 

  16. Roper RJ, St John HK, Philip J, Lawler A, Reeves RH (2006) Perinatal loss of Ts65Dn Down syndrome mice. Genetics 172:437–443

    Article  PubMed  CAS  Google Scholar 

  17. Cefalu JA, Croom WJJ, Eisen EJ, Jones EE, Daniel LR, Taylor IL (1998) Jejunal function and plasma amino acid concentrations in the segmental trisomic Ts65Dn mouse. Growth Dev Aging 62:47–59

    PubMed  CAS  Google Scholar 

  18. Paz-Miguel JE, Flores R, Sánchez-Velasco P, Ocejo-Vimyals G, Escribano de Diego J, López de Rego J, Leyva-Cobián F (1999) Reactive oxygen intermediates during programmed cell death induced in the thymus of the Ts65Dn mouse, a murine model for human Down’s syndrome. J Immunol 163:5399–5410

    PubMed  CAS  Google Scholar 

  19. Kirsammer G, Jilani S, Liu H, Davis E, gurbuxani S, Le Beau MM, Crispino JD (2008) Highly penetrant myeloproliferative disease in the Ts65Dn mouse model of Down syndrome. Blood 111:767–775

    Article  PubMed  CAS  Google Scholar 

  20. Richtsmeier JT, Zumwalt A, Carlson EJ, Epstein CJ, Reeves RH (2002) Craniofacial phenotypes in segmentally trisomic mouse models for Down syndrome. Am J Med Genet 107:317–324

    Article  PubMed  Google Scholar 

  21. Hill CA, Reeves RH, Richtsmeier JT (2007) Effects of aneuplidy on skull growth in a mouse model of Down syndrome. J Anat 210:394–405

    Article  PubMed  Google Scholar 

  22. Moore CS (2006) Postnatal lethality and cadiac anomalies in the Ts65Dn Down syndrome mouse model. Mamm Genome 17:1005–1012

    Article  PubMed  CAS  Google Scholar 

  23. O’Doherty A, Ruf S, Mulligan C, Hildreth V, Errington ML, Cooke S, Sesay A, Modino S, Vanes L, Hernandez D, Linehan JM, Sharpe PT, Brandner S, Bliss TV, Henderson DJ, Nizetic D, Tybulewicz VL, FFisher EM (2005) An aneuploid mouse strain carrying human chromosome 21 with Down syndrome phenotypes. Science 309:2033–2037

    Article  PubMed  CAS  Google Scholar 

  24. Yu T, Li Z, Jia Z, Clapcote SJ, Li S, Asrar S, Pao A, Chen R, Fan N, Carattini-Rivera S, Bechard AR, Spring S, Henkelman RM, Stoica G, Matsui S, Nowak NJ, Roder JC, Chen C, Bradley A, Yu YE (2010) A mouse model of Down syndrome trisomic for all human chromosome 21 syntnic regions. Hum Mol Genet 19:2780–2791

    Article  PubMed  CAS  Google Scholar 

  25. Oppenheim RW (1991) Cell death during development of the nervous system. Annu Rev Neurosci 14:453–501

    Article  PubMed  CAS  Google Scholar 

  26. Caviness VS, Takahashi T, Nowakowski RS (1995) Numbers, time and neocortical neuronogenesis: a general developmental and evolutionary model. Trends Neurosci 18:379–383

    Article  PubMed  CAS  Google Scholar 

  27. Blaschke AJ, Staley K, Chun J (1996) Widespread programmed cell death in proliferative and postmitotic regions of the fetal cerebral cortex. Development 122:1165–1174

    PubMed  CAS  Google Scholar 

  28. Haydar TF, Kuan C-Y, Flavel RA, Rakic P (1999) The role of cell death in regulating the size and shape of the mammalian forebrain. Cereb Cortex 9:621–626

    Article  PubMed  CAS  Google Scholar 

  29. Jovanović Z (2012) Mechanisms of neurodegeneration in Alzheimer’s disease. Med Pregl 65:301–307

    Article  PubMed  Google Scholar 

  30. Verri M, Pastoris O, Dossena M, Aquilani R, Guerriero F, Cuzzoni G, Venturini L, Ricevuti G, Bongiorno AI (2012) Mitochondrial alterations, oxidative stress and neuroinflammation in Alzheimer’s disease. Int J Immunopathol Pharmacol 25:345–353

    PubMed  CAS  Google Scholar 

  31. Perier C, Bové J, Vila M (2012) Mitochondria and programmed cell death in Parkinson’s disease: apoptosis and beyond. Antioxid Redox Signal 16:883–895

    Article  PubMed  CAS  Google Scholar 

  32. Murase S, Owens DF, McKay RD (2011) In the newborn hippocampus, neurotrophin-dependent survival requires spontaneous activity and integrin signaling. J Neurosci 31:7791–7800

    Article  PubMed  CAS  Google Scholar 

  33. Barde YA (1994) Neurotrophins: a family of proteins supporting the survival of neurons. Prog Clin Biol Res 390:45–56

    PubMed  CAS  Google Scholar 

  34. Zimmermann KC, Bonzon C, Green DR (2001) The machinery of programmed cell death. Pharmacol Ther 92:57–70

    Article  PubMed  CAS  Google Scholar 

  35. Budihardjo I, Oliver H, Lutter M, Luo X, Wang W (1999) Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 15:269–290

    Article  PubMed  CAS  Google Scholar 

  36. Jiang X, Wang X (2004) Cytochrome C-mediated apoptosis. Annu Rev Biochem 73:87–106

    Article  PubMed  CAS  Google Scholar 

  37. Hockenbery DM, Oltvai ZM, Yin XM, Milliman CL, Korsmeyer SJ (1993) Bcl-2 funtions in an antioxidant pathway to prevent apoptosis. Cell 75:241–251

    Article  PubMed  CAS  Google Scholar 

  38. Kroemer G (1997) The proto-oncogene Bcl-2 and its rele in regulating apoptosis. Nat Med 3:614–620

    Article  PubMed  CAS  Google Scholar 

  39. Cory S, Adams JM (2002) The Bcl-2 family: regulators of the cellular life-or-death swich. Nat Rev Cancer 2:647–656

    Article  PubMed  CAS  Google Scholar 

  40. Yang E, Zha J, Jockel J, Boise LH, Thomson CB, Korsmeyer SJ (1995) Bad, a heterodimeric partner for Bcl-xl and Bcl-2, displaces Bax and promotes cell death. Cell 80:285–291

    Article  PubMed  CAS  Google Scholar 

  41. Wisniewski KE (1990) Down syndrome children often have brain with maturation delay, retardation of growth and cortical dysgenesis. Am J Med Genet 7:274–281

    CAS  Google Scholar 

  42. Golden JA, Hyman BT (1994) Development of the superior temporal neuocortex is anomalous in trisomy 21. J Neuropathol Exp Neurol 53:513–520

    Article  PubMed  CAS  Google Scholar 

  43. Guidi S, Bonasoni P, Ceccarelli C, Santini D, Gualtieri F, Ciani E, Bartesaghi R (2008) Neurogenesis impairment and increased cell death reduce total neuron number in the hippocampal region of foetuses with Down syndrome. Brain Pathol 18:180–197

    Article  PubMed  Google Scholar 

  44. Guidi S, Ciani E, Bonasoni P, Santini D, Bartesaghi R (2010) Widespread proliferation impairment and hypocellularity in the cerebellum of fetuses with Down syndrome. Brain Pathol 21:361–373

    Article  PubMed  Google Scholar 

  45. Larsen KB, Laursen H, Graemb N, Samuelsena GB, Bogdanovicc N, Pakkenberga B (2008) Reduced cell number in the neocortical part of the human fetal brain in Down syndrome. Ann Anat 190:421–427

    Article  PubMed  Google Scholar 

  46. Chakrabarti L, Galdzicki Z, Haydar TF (2007) Defects in embryonic neurogenesis and initial synapse formation in the forebrain of the Ts65Dn mouse model of Down syndrome. J Neurosci 27:11483–11495

    Article  PubMed  CAS  Google Scholar 

  47. Insausti AM, Megías M, Crespo D, Cruz-Orive LM, Dierssen M, Vallina IF, Insausti R, Flórez J (1998) Hippocampal volume and neuronal number in Ts65Dn mice: a murine model of Down syndrome. Neurosci Lett 253:1–4

    Article  Google Scholar 

  48. Kurt MA, Kafa MI, Dierssen M, Davies DC (2004) Deficits in neuronal density in CA1 and synaptic density in the dentate gyrus, CA3 and CA1, in a mouse model of Down syndrome. Brain Res 1022:101–109

    Article  PubMed  CAS  Google Scholar 

  49. Lorenzi HA, Reeves RH (2006) Hipocampal hipocellularity in the Ts65Dn mouse originates early in development. Brain Res 1104:153–159

    Article  PubMed  CAS  Google Scholar 

  50. Contestabile A, Fila T, Ceccarelli C, Bonasoni P, Bonapace L, Santini D, Bartesaghi R, Ciani E (2007) Cell cycle alteration and decreased cell proliferation in the hippocampal dentate gyrus and in the neocortical germinal matrix of fetuses with Down síndrome and in Ts65Dn mice. Hippocampus 17:665–678

    Article  PubMed  Google Scholar 

  51. Llorens-Martín MV, Rueda N, Tejeda GS, Flórez J, Trejo JL, Martínez-Cué C (2010) Effects of voluntary physical exercise on adult hippocampal neurogenesis and behavior of Ts65Dn mice, a model of Down syndrome. Neuroscience 171:1228–1240

    Article  PubMed  CAS  Google Scholar 

  52. Rueda N, Llorens-Martin M, Florez J, Valdizan E, Banerjee P, Trejo JL, Martínez-Cué C (2010) Memantine normalizes several phenotypic features in the Ts65Dn mouse model of Down syndrome. J Alzheimers Dis 21:277–290

    PubMed  CAS  Google Scholar 

  53. Baxter LL, Moran TH, Richtsmeier JT, Troncoso J, Reeves RH (2000) Discovery and genetic localization of Down syndrome cerebellar phenotypes using the Ts65Dn mouse. Hum Mol Genet 9:105–202

    Article  Google Scholar 

  54. Roper RJ, Baxter LL, Saran NG, Klinedinst DK, Beachy PA, Reeves RH (2006) Defective cerebellar esponse to mitogenic Hedgehog signaling in Down syndrome mice. Proc Natl Acad Sci USA 103:1452–1456

    Article  PubMed  CAS  Google Scholar 

  55. Contestabile A, Fila T, Bartesaghi R, Ciani E (2009) Cell cycle elongation impairs proliferation of cerebellar granule cell precursors in the Ts65Dn mouse, an animal model for Down syndrome. Brain Pathol 19:224–237

    Article  PubMed  CAS  Google Scholar 

  56. Olson LE, Roper RJ, Baxtr LL, Carlson EJ, Epstein CJ, Reeves RH (2004) Down syndrome mouse models Ts65Dn, Ts1Cje and Ms1Cje/Ts65Dn exhibit variable severity of cerebellar phenotypes. Dev Dyn 230:581–589

    Article  PubMed  CAS  Google Scholar 

  57. Busciglio J, Yankner BA (1995) Apoptosis and increased generation of reactive oxygen species in Down′s syndrome neurons in vitro. Nature 378:776–779

    Article  PubMed  CAS  Google Scholar 

  58. Busciglio J, Pelsman A, Wong C, Pigino G, Yuan M, Mori H, Yankner BA (2002) Altered metabolism of the amyloid β precursor protein is associated with Mitochondrial dysfunction in Down′s syndrome. Neuron 33:677–688

    Article  PubMed  CAS  Google Scholar 

  59. Pelsman A, Hoyo-Vadillo C, Gudasheva TA, Seredenin SB, Ostrovskaya RU, Busciglio J (2003) GVS-111 prevents oxidative damage and apoptosis in normal and Down’s syndrome human cortical neurons. Int J Dev Neurosci 21:117–124

    Article  PubMed  CAS  Google Scholar 

  60. Helguera P, Pelsman A, Pigino G, Wolvetang E, Head E, Busciglio J (2005) Ets-2 pronotes the activation of a mitocondrial death pathway in Down′s syndrome neurons. J Neurosci 25:2295–2303

    Article  PubMed  CAS  Google Scholar 

  61. Seild R, Bidmon B, Bajo M, Yoo PC, Cairns N, LaCasse EC, Lubec G (2001) Evidence for apoptosis in the fetal Down syndrome brain. J Child Neurol 16:438–442

    Google Scholar 

  62. Abraham H, Tornoczky T, Kosztolanyi G, Seress L (2001) Cell formation in the cortical layers of the developing human cerebelloun. Int J Dev Neurosci 19:53–62

    Article  PubMed  CAS  Google Scholar 

  63. Gulesserian T, Engidawork E, Yoo BC, Cairns N, Lubec G (2001) Alteration of caspases and other apoptosis regulatory proteins in Down syndrome. J Neural Transm Suppl 61:163–179

    PubMed  Google Scholar 

  64. Engidawork E, Balic N, Juranville JF, Fountoulakis M, Dierssen M, Lubec G (2001) Unaltered expression of Fas (CD95/APO-1), Caspase-3, Bcl-2 and annexins in brains of fetal Down syndrome: evidence against increased apoptosis. J Neural Transm Suppl 61:149–162

    PubMed  Google Scholar 

  65. Bhattacharyya A, McMillan E, Chen SI, Wallace K, Svendsen CN (2009) A critical period in cortical interneuron neurogenesis in Down syndrome revealed by human neural progenitor cells. Dev Neurosci 31:497–510

    Article  PubMed  CAS  Google Scholar 

  66. Kadota M, Shirayoshi Y, Oshimura M (2002) Elevated apoptosis in pre-mature neurons differentiated from mouse ES cells containing a single human chromosome 21. Biochem Biophys Res Commun 299:599–605

    Article  PubMed  CAS  Google Scholar 

  67. Bambrick LL, Krueger BK (1999) Neuronal apoptosis in mouse trysomy 16: mediation by caspases. J Neurochem 72:1769–1772

    Article  PubMed  CAS  Google Scholar 

  68. Stabel-Burow J, Kleu A, Schuchmann S, Heinemann U (1997) Glutathione levels and nerve cell loss in hippocampal cultures from trisomy 16 mouse—a model of Down syndrome. Brain Res 765:313–318

    Article  PubMed  CAS  Google Scholar 

  69. Schumann S, Heinemann U (2000) Diminished glutathione levels cause spontaneous mitochondria-mediated cell death in neurons from trisomy 16 mice: a model of Down’s syndrome. J Neurochem 74:1205–1214

    Article  Google Scholar 

  70. Haydar TF, Nowakowski RS, Yarowsky PJ, Krueger BK (2000) Role of founder cell deficit and delayed neuronogeneis in microencephaly of the trisomy 16 mouse. J Neurosci 20:4156–4164

    PubMed  CAS  Google Scholar 

  71. Spreafico R, Frassoni C, Arclli P, Selvaggio M, De Biasi S (1995) In situ labeling of apoptotic cell death in the cerebral córtex and thalamus of rats during development. J Comp Neurol 363:281–295

    Article  PubMed  CAS  Google Scholar 

  72. Thomaidou D, Mioni MC, Cavanagh JFR, Parnavelas JG (1997) Apoptosis and its relation to the cell cycle in the developing cerebral córtex. J Neurosci 17:1075–1085

    PubMed  CAS  Google Scholar 

  73. Kim WR, Sun W (2011) Programmed cell death during postnatal development of the rodent nervous system. Dev Growth Differ 53:225–235

    Article  PubMed  Google Scholar 

  74. Kesslak JP, Nagata SF, Lott I, Nalciouglu O (1994) Magnetic resonance imaging analysis of age-related changes in the brains of individuals with Down’s syndrome. Neurology 44:1039–1045

    Article  PubMed  CAS  Google Scholar 

  75. Krasuski JS, Alexander GE, Horwitz B, Rapoport SI, Schapiro MB (2002) Relation of medial temporal lobe volumes to age and memory function in nondemented adults with Down’s syndrome: implications for the prodromal phase of Alzheimer’s disease. Am J Psychiatry 159:74–81

    Article  PubMed  Google Scholar 

  76. Teipel SJ, Alexander GE, Schapiro MB, Möller HJ, Rapoport SI, Hampel H (2004) Age-related cortical grey matter reductions in non-demented Down’s syndrome adults determined by MRI with voxel-based morphometry. Brain 127:811–824

    Article  PubMed  Google Scholar 

  77. Teipel SJ, Hampel H (2006) Neuroanatomy of Down syndrome in vivo: a model of preclinical Alzheimer’s disease. Behav Genet 36:405–415

    Article  PubMed  Google Scholar 

  78. Griffin WS, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ, White CL, Arao C (1989) Brain interleukin I and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci USA 86:7611–7615

    Article  PubMed  CAS  Google Scholar 

  79. Wenk GL, McGann K, Mencarelli A, Hauss-Wegrzyniak B, Del Doldato P, Fiorucci S (2000) Mechanisms to prevent the toxicity of chronic neuroinflammtion on forebrain cholinergic neurons. Eur J Pharmacol 402:77–85

    Article  PubMed  CAS  Google Scholar 

  80. Jovanovic SV, Clements D, MacLeod K (1998) Biomarkers of oxidative stress are significantly elevated in Down syndrome. Free Radic Biol Med 25:1044–1048

    Article  PubMed  CAS  Google Scholar 

  81. Capone G, Kim P, Jovanovich S, Payne L, Freund L, Welch K, Miller E, Trush M (2002) Evidence for increased mitochondrial superoxide production in Down syndrome. Life Sci 70:2885–2895

    Article  PubMed  CAS  Google Scholar 

  82. Granholm AC, Sanders LA, Crnic LS (2000) Loss of cholinergic phenotype in basal forebrain coincides with cognitive decline in a mouse model of Down’s syndrome. Exp Neurol 161:647–663

    Article  PubMed  CAS  Google Scholar 

  83. Hunter CL, Bachman D, Granholm AC (2004) Minocycline prevents cholinergic loss in a mouse model of Down’s syndrome. Ann Neurol 56:675–688

    Article  PubMed  CAS  Google Scholar 

  84. Contestabile A, Ciani E, Contestabile A (2008) The place of choline acetyltransferase activity measurement in the “cholinergic hypothesis” of neurodegenerative diseases. Neurochem Res 33:318–327

    Article  PubMed  CAS  Google Scholar 

  85. Lockrow J, Prakasam A, Huang P, Bimonte-Nelson H, Sambamurti K, Granholm AC (2009) Cholinergic degeneration and memory loss delayed by vitamin E in a Down syndrom mouse model. Exp Neurol 216:278–289

    Article  PubMed  CAS  Google Scholar 

  86. Shichiri M, Yoshida Y, Ishida N, Hagihara Y, Iwahashi H, Tamai H, Niki E (2011) alpha-Tocopherol suppreses lipid peroxiation and behavioural and cognitive impairments in the Ts65Dn mouse model of Down syndrome. Free Radic Biol Med 15:1801–1811

    Article  CAS  Google Scholar 

  87. Johnson EM (1994) Possible role of neuronal apoptosis in Alzheimer’s disease. Neurobiol Aging 2:S187–S189

    Article  Google Scholar 

  88. Wellington CL, Hayden MR (2000) Caspases and neurodegeneration: on the cutting edge of new therapeutic approaches. Clin Genet 57:1–510

    Article  PubMed  CAS  Google Scholar 

  89. Stadelmann C, Deckwerth TL, Srinivasan A, Bancher C, Brück W, Jellinger K, Lassmann H (1999) Activation of caspase-3 in single neurons and autophagic granules of granulovacuolar degeneration in Alzheimer’s disease. Evidence for apoptotic cell death. Am J Pathol 155:1459–1466

    Article  PubMed  CAS  Google Scholar 

  90. Anderson AJ, Stoltzner S, Lai F, Su J, Nixon RA (2000) Morphological and biochemical assessment of DNA damage and apoptosis in Down syndrome and Alzheimer disease, an effect of post-mortem tissue archival on TUNEL. Neurobiol Aging 21:511–524

    Article  PubMed  CAS  Google Scholar 

  91. De la Monte SM (1999) Molecular abnormalities of the brain in Down syndrome: relevance to Alzheimer’s neurodegeneration. J Neural Transm Suppl 57:1–19

    PubMed  Google Scholar 

  92. Seidl R, Fang-Kircher S, Bidmon B, Cairns N, Lubec G (1999) Apoptosis-associated proteins p53 and APO-1/Fas (CD95) in brains of adult patients with Down syndrome. Neurosci Lett 260(1):9–12

    Article  PubMed  CAS  Google Scholar 

  93. Hansen R, Oren M (1997) p53; from inductive signal to cellular effect. Curr Opin Genet Dev 7:46–51

    Article  PubMed  CAS  Google Scholar 

  94. Rowen S, Fisher DE (1997) Mechanisms of apoptotic cell death. Leukemia 11:457–465

    Article  CAS  Google Scholar 

  95. Sawa A, Oyama F, Cairns N, Amano N, Matsushita M (1997) Aberrant expression of bcl-2 gene family in Down′s syndrome brains. Mol Brain Res 48:53–59

    Article  PubMed  CAS  Google Scholar 

  96. Nagy ZS, Eisiri MM (1997) Apoptosis-related protein expression in the hippocampus in Alzheimer’s disease. Neurobiol Aging 18:565–571

    Article  PubMed  CAS  Google Scholar 

  97. Yoshioka K, amamoto S, Moriguchi N, Miyata H, Tsukiyama K, Isokawa S, Horiuchi F, Takemura T (2000) Overexpression of Bcl-2 in transient abnormal myleopoiesis associated with Down syndrome. Ann Hematol 79:319–321

    Article  PubMed  CAS  Google Scholar 

  98. Engidawork E, Gulesserian T, Seild R, Cairns N, Lubec G (2001) Expression of apoptosis related proteins: RAIDD, ZIP kinase, Bim/BOD, p21, Bcl-2 and NF-kB in brains of patients with Down syndrome. J Neural Transm Suppl 61:181–192

    PubMed  Google Scholar 

  99. Hewitt CA, Ling KH, Merson TD, Simpson KM, Ritchie ME, King SL, Pritchard MA, Smyth GK, Thomas T, Scott HS, Voss AK (2010) Gene network disruptions and neurogenesis defects in the adult Ts1Cje mouse model of Down syndrome. PLoS One 5:e11561

    Article  PubMed  CAS  Google Scholar 

  100. Rueda N, Flórez J, Martínez-Cué C (2011) The Ts65Dn mouse model of Down syndrome shows reduced expression of the Bcl-Xl antiapoptotic protein in the hippocampus not accompanied by changes in molecular or cellular markers of cell death. Int J Dev Neurosci 29:711–716

    Article  PubMed  CAS  Google Scholar 

  101. Bianchi P, Ciani E, Contestabile A, Guidi S, Bartesaghi R (2010) Lithium restores neurogenesis in the subventricular zone of the Ts65Dn mouse, a model for Down syndrome. Brain Pathol 20:106–118

    Article  PubMed  CAS  Google Scholar 

  102. Lott IT (2012) Antioxidants in Down syndrome. Biochem Biophys Acta 1822:657–663

    Article  PubMed  CAS  Google Scholar 

  103. Kinnula VL, Crapo JD (2003) Supeoroxide dismutases in the lung and human lung diseases. Am J Respir Crit Care Med 167:1600–1619

    Article  PubMed  Google Scholar 

  104. Vogt M, Bauer MK, Ferrari D, Schulze-Osthoff K (1998) Oxidative stress and hypoxia/reoxygenation trigger CD95 (APO-1/Fas) ligand expression in microglial cells. FEBS Lett 429:67–72

    Article  PubMed  CAS  Google Scholar 

  105. Lowe SW, Ruley HE, Jacks T, Housman DE (1993) p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74:957–967

    Article  PubMed  CAS  Google Scholar 

  106. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B (1997) A model for p53-induced apoptosis. Nature 389(6648):300–305

    Article  PubMed  CAS  Google Scholar 

  107. Kim SH, Yoo BC, Broers JL, Cairns N, Lubec G (2000) Neuroendocrine-specific protein C, a marker of neuronal differentiation, is reduced in brain of patients with Down syndrome and Alzheimer’s disease. Biochem Biophys Res Commun 276:329–334

    Article  PubMed  CAS  Google Scholar 

  108. Kedziora J, Bartosz G (1988) Down’s syndrome: a pathology involving the lack of balance of reactive oxygen species. Free Radic Biol Med 4:317–330

    Article  PubMed  CAS  Google Scholar 

  109. De Haan JB, Wolvetang EJ, Cristiano F, Ianello R, Bladier C, Kelner M et al (1997) Reactive oxygen species and their contribution to pathology in Down syndrome. Adv Pharmacol 38:379–402

    Article  PubMed  Google Scholar 

  110. Busciglio J, Andersen JK, Schipper HM, Gilad GM, McCarty R, Marzatico et al (1998) Stress, aging, and neurodegenerative disorders. Molecular mechanisms. Ann N Y Acad Sci 851:429–443

    Article  PubMed  CAS  Google Scholar 

  111. Busciglio J, Pelsman A, Helguera P, Ashur-Fabian O, Pinhasov A, Brenneman DE, Gozes I (2007) NAP and ADNF-9 protect normal and Down’s syndrome cortical neurons from oxidative damage and apoptosis. Curr Pharm Des 13(11):1091–1098

    Article  PubMed  CAS  Google Scholar 

  112. Ellis JM, Tan HK, Gilbert RE, Muller DPR, Henley W, Moy R, Pumphrey R, Ani C, Davies S, Edwards V, Green H, Salt A, Logan S (2008) Supplementation with antioxidants and folinic acid for children with Down’s syndrome: randomised controlled trial. Br Med J 336:594–597

    Article  CAS  Google Scholar 

  113. Lott IT, Doran E, Nguyen VQ, Tournay A, Head E, Gillen DL (2011) Down syndrome and dementia: a randomized, controlled trial of antioxidant supplementation. Am J Med Genet 155:1939–1948

    Article  CAS  Google Scholar 

  114. Salman MS (2002) Systematic review of the effect of the therapeutic dietary supplements and drugs on cognitive function in subjects with Down syndrome. Eur J Paediatr Neurol 6:213–219

    Article  PubMed  Google Scholar 

  115. Seo H, Isacson O (2005) Abnormal APP, cholinergic and cognitive function in Ts65Dn Down’s model mice. Exp Neurol 193:469–480

    Article  PubMed  CAS  Google Scholar 

  116. Netzer WJ, Powell C, Nong Y, Blundell J, Wong L, Duff K, Flajolet M, Greengard P (2010) Lowering beta-amyloid levels rescues learning and memory in a Down syndrome mouse model. PLoS One 5:e10943

    Article  PubMed  CAS  Google Scholar 

  117. Millan Sanchez M, Heyn SN, Das D, Moghadam S, Martin KJ, Salehi A (2011) Neurobiological elements of cognitive dysfunction in Down syndrome: exploring the role of APP. Biol Psychiatry 71(5):403–409

    Article  PubMed  CAS  Google Scholar 

  118. Lee MS, Kwon YT, Li M, Peng J, Friedlander RM, Tsai LH (2000) Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405:360–364

    Article  PubMed  CAS  Google Scholar 

  119. Mattson MP, Partin J, Begley JG (1998) Amyloid beta-peptide induces apoptosis-related events in synapses and dendrites. Brain Res 807:167–176

    Article  PubMed  CAS  Google Scholar 

  120. Chen YZ (2004) APP induces neuronal apoptosis through APP-BP1-mediated downregulation of beta-catenin. Apoptosis 9:415–422

    Article  PubMed  CAS  Google Scholar 

  121. Pellegrini L, Passer BJ, Tabaton M, Ganjei JK, D’Adamio L (1999) Alternative, non-secretase processing of Alzheimer’s beta-amyloid precursor protein during apoptosis by caspase-6 and -8. J Biol Chem 274:21011–21016

    Article  PubMed  CAS  Google Scholar 

  122. Arriagada C, Bustamante M, Atwater I, Rojas E, Caviedes R, Caviedes P (2010) Apoptosis is directly related to intracelular amyloid accumulation in a cell line derived from the cerebral cortex of a trisomy 16 mouse, an animal model of Down syndrome. Neurosci Lett 470:81–85

    Article  PubMed  CAS  Google Scholar 

  123. Opazo P, Saud K, de Pierre Saint M, Cárdenas AM, Allen DD, Segura J, Caviedes R, Caviedes P (2006) Knockdown of amyloid precursor protein normalizes cholinergic function in a cell line derived from the cerebral cortex of a trisomy 16 mouse: an animal model of Down syndrome. J Neurosci Res 84:1303–1310

    Article  PubMed  CAS  Google Scholar 

  124. Rojas G, Cárdenas AM, Fernández-Olivares P, Shimahara T, Segura-Aguilar J, Caviedes R, Caviedes P (2008) Effect of the knockdown of amyloid precursor protein on intracellular calcium incerases in a neuronal cell line derived from the cerebral cortx of a trisomy 16 mouse. Exp Neurol 209:234–242

    Article  PubMed  CAS  Google Scholar 

  125. Guedj F, Lpes Pereira P, Najas S, Barallobre MJ, Chabert C, Souchet B, Sebrie C, Verney C, Herault Y, Arbones M, Delabar JM (2012) DYRK1A: a master regulatory protein controlling brain growth. Neurobiol Dis 46:190–203

    Article  PubMed  CAS  Google Scholar 

  126. Park J, Oh Y, Yoo L, Jung MS, Song WJ, Lee SH, Seo H, Chung KC (2010) Dyrk1A phosphorylates p53 and inhibits proliferation of embryonic neuronal cells. J Biol Chem 285:31895–31906

    Article  PubMed  CAS  Google Scholar 

  127. Ryoo SR, Cho HJ, Lee HW, Jeong HK, Radnaabazar C, Kim YS, Kim M, Son MY, Seo H, Chung SH et al (2008) Dual-specificity tyrosine (Y)-phosphorylation regulated kinase 1A-mediated phosphorylation of amyloid precursor protein: evidence for a functional link between Down syndrome and Alzheimer’s disease. J Neurochem 104:1333–1344

    Article  PubMed  CAS  Google Scholar 

  128. Wolvetang EJ, Wilson TJ, Sanij E, Busciglio J, Hatzistavrou T, Seth A, Hertzog PJ, Kola I (2003) ETS2 overexpression in transgenic models and in Down syndrome predisposes to apoptosis via the p53 pathway. Hum Mol Genet 12:247–255

    Article  PubMed  CAS  Google Scholar 

  129. Sanij E, Hatzistavrou T, Herzog P, Kola I, Wolvetang EJ (2001) Ets2 is induced by oxidative stress and sensitizes cells to H2O2-induced apoptosis: implications for Down’s syndrome. Biochem Biophys Res Commun 287:1003–1008

    Article  PubMed  CAS  Google Scholar 

  130. Semetchenko VI, Watson DK (2000) Ets target genes: past, present and future. Oncogene 19:6533–6548

    Article  CAS  Google Scholar 

  131. Courage ML, Adams RJ, Reyno S, Kwa PG (1994) Visual acuity in infants and children with Down syndrome. Dev Med Child Neurol 36:586–593

    Article  PubMed  CAS  Google Scholar 

  132. John FM, Bromham NR, Woodhouse JM, Candy TR (2004) Spatial vision deficits in infants and children with Down syndrome. Invest Ophtalmol Vis Sci 45:1566–1572

    Article  Google Scholar 

  133. Little JA, Woodhouse JM, Lauritzen JS, Saunders KJ (2007) The impact of optical factors on resolution acuity in children with Down syndrome. Invest Ophtalmol Vis Sci 48:3995–4001

    Article  Google Scholar 

  134. Young RW (1984) Cell death during differentiation of the retina in the mouse. J Comp Neurol 229:362–373

    Article  PubMed  CAS  Google Scholar 

  135. Boya P, de la Rosa EJ (2005) Cell death in early neural life. Birth Defects Res C 75:281–293

    Article  CAS  Google Scholar 

  136. Cellerino A, Bahr M, Isenmann S (2000) Apoptosis in the developing visual system. Cell Tissue Res 301:53–69

    Article  PubMed  CAS  Google Scholar 

  137. Laguna A, aranda S, Barallobre MJ, Barhoum R, Fernández E, Fotaki V, Delabar JM, de La Luna S, de La Villa P, Arbonés ML (2008) The protein kinase DYRK1A regulates caspase-9-mediated apoptosis during retina development. Dev Cell 15:841–853

    Article  PubMed  CAS  Google Scholar 

  138. Segal DJ, McCoy EE (1974) Studies on Down’s syndrome in tissue culture. I Growth rates and protein contents of fibroblasts cultures. J Cell Physiol 83:85–90

    Article  PubMed  CAS  Google Scholar 

  139. De Haan JB, Cristiano F, Ianello R, Bladier C, Kelner MJ, Kola I (1996) Elevation in the ratio of Cu/Zn-superoxide dismutase to glutathione peroxidise activity induces features of cellular senescence and this effect is mediated by hydrogen peroxide. Hum Mol Genet 5:283–292

    Article  PubMed  Google Scholar 

  140. De Haan JB, Susil B, Pritchard M, Kola I (2003) An altered antioxidant balance occurs in Down syndrome fetal organs: implications for the ‘gene dosage effect’ hypothesis. J Neural Transm Suppl 67:67–83

    Article  PubMed  Google Scholar 

  141. Contestabile A, Fila T, Cappellini A, Bartesaghi R, Ciani E (2009) Widespread impairment of cell proliferation in the neonate Ts65Dn mouse, a model for Down syndrome. Cell Prolif 42:171–181

    Article  PubMed  CAS  Google Scholar 

  142. Garcia-Ramírez M, Toran N, Carrascosa A, Audi L (1998) Down’s syndrome: altered chondrogenesis in fetal rib. Pediatr Res 44:93–98

    Article  PubMed  Google Scholar 

  143. Raouf A, Seth A (2000) Ets transcription factors and targets in osteogenesis. Oncogene 19:6455–6463

    Article  PubMed  CAS  Google Scholar 

  144. Ferreti E, Villaescusa JC, Di Rosa P, Fernández- Diaz LC, Ferrari G et al (2006) Hymoporphic mutations of the TALE gene Prep1 (pKnox1) causes a major reduction of PBx and Meis proteins and a pleiotropic embryonic phenotype. Moll Cell Biol 26:5650–5662

    Article  CAS  Google Scholar 

  145. Oriente F, Fernández-Díaz LC, Miele C, Iovino S, Mori S, Diaz VM, Troncone G, Cassese A, Formisano P, Blasi F et al (2008) Prep1 deficiency induces protection from diabetes and increased insulin sensitivity through a p160-mediated mechanisms. Mol Cell Biol 28:5634–5645

    Article  PubMed  CAS  Google Scholar 

  146. Berthelsen J, Viggiano L, Schulz H, Ferretti E, Consalez GG, Rocchi M, Blasi F (1998) PKNOX1, a gene encoding PREP1, a new regulator of Pbx activity, maps on human chromosome 21q22.3 and murine chromosome 17B/C. Genomics 47:323–324

    Article  PubMed  CAS  Google Scholar 

  147. Micali N, Ferrai C, Fernández-Díaz LC, Blasi F, Crippa MP (2009) Prep1 directly regulates the intrinsic apoptotic pathway by controlling Bcl-XL levels. Mol Cell Biol 29:1143–1151

    Article  PubMed  CAS  Google Scholar 

  148. Micali N, Longobardi E, Lotti G, Ferrai C, Castagnaro L, Ricciardi M, Blasi F, Crippa MP (2010) Down syndrome fibroblasts and mouse Prep1-overexpressing cells display increased sensitivity to genotoxic stress. Nuclei Acids Res 38:3595–3604

    Article  CAS  Google Scholar 

  149. Ferencz C, Neill CA, Boughman JA, Rubin JD, Brenner JI, Perry LW (1989) Congenital cardiovascular malformations associated with chromosome abnormalities: an epidemiologic study. J Pediatr 114:79–86

    Article  PubMed  CAS  Google Scholar 

  150. Carmi R, Boughman JA, Ferencz C (1992) Endocardial cushion defect: further studies of “isolated” versus “syndromic” occurrence. Am J Med Genet 43:569–575

    Article  PubMed  CAS  Google Scholar 

  151. Hurle JM, Ojeda JL (1979) Cell death during the development of the truncus and conus of the chick embryo heart. J Anat 129(2):427–439

    PubMed  CAS  Google Scholar 

  152. Kajstura J, Mansukhani M, Cheng W, Reiss K, Krajewski S, Reed JC et al (1995) Programmed cell death and expression of the protooncogen bcl-2 in myocytes during postnatal maturation of the heart. Exp Cell Res 219:110–121

    Article  PubMed  CAS  Google Scholar 

  153. James TN (1994) Normal and abnormal consequences of apoptosis in the human heart: from postnatal morphogenesis to paroxysmal arrhythmias. Circulation 90:556–573

    Article  PubMed  CAS  Google Scholar 

  154. James TN, St Martin E, Willis PW, Lohr TO (1996) Apoptosis as a possible cause of gradual development of complete heart block and fatal arrhthmias associated with absence of the AV node, sinus node and, intermodal pathways. Circulation 93:1424–1428

    Article  PubMed  CAS  Google Scholar 

  155. Saphier CJ, Yeh J (1998) Altered apoptosis levels in hearts of human fetuses with Down syndrome. Am J Obstet Gynecol 179:962–965

    Article  PubMed  CAS  Google Scholar 

  156. Hiltgen GG, Markwald RR, Litke LL (1996) Morphogenetic alterations during endocardial cushion development in the trisomy 16 Down syndrome mouse. Pediatr Cardiol 17:21–30

    Article  PubMed  CAS  Google Scholar 

  157. Mc Dowell KM, Craven DI (2011) Pulmonary complications of Down syndrome during childhood. J Pediatr 158:319–325

    Article  Google Scholar 

  158. Bruijn M, von der Thüsen JH, van der Loos CM, de Kruger RR, van Loenhout RB, Bos AP, van Woensen JBM (2007) Pulmonary epithelial apoptosis in fetal Down syndrome: not higher than normal. Pediatr Dev Pathol 15:199–205

    Article  Google Scholar 

  159. Matute-Bello G, Martin TR (2003) Apoptosis in acute lung injury. Crit Care 7:355–358

    Article  PubMed  Google Scholar 

  160. Kusters MA, Verstegen RH, Gemen EF et al (2009) Intrinsic defect of the immune system in children with Down syndrome. A review. Clin Exp Immunol 156:189–193

    Article  PubMed  CAS  Google Scholar 

  161. Larocca LM, Piatelli M, Valitutti S, Castellino F, Maggiano N, Musiani P (1988) Alterations in thymocyte subpopulations in Down’s syndrome (trisomy 21). Clin Immunol Immunopathol 49:175–186

    Article  PubMed  CAS  Google Scholar 

  162. Murphy M, Epstein LB (1992) Down’s syndrome (DS) peripheral blood: evidence for an inefficient release of mature T cells by the DS thumus. Clin Immunol Immunopathol 62:245–251

    Article  PubMed  CAS  Google Scholar 

  163. Murphy M, Friend DS, Pike-Nobile L, Epstein LB (1992) Tumor necrosis-alfa factor and IFN-gamma expression in human thymus: localization and overexpression in Down’s syndrome (trisomy 21). J Immunol 149:2506–2512

    PubMed  CAS  Google Scholar 

  164. De Hingh YC, van der Vossen PW, Gemen EF et al (2005) Intrinsic abnormalities of lymphocyte counts in children with Down syndrome. J Pediatr 147:744–747

    Article  PubMed  Google Scholar 

  165. Gemen EFA, Verstegen RHF, Leuvenink J, de Vries E (2012) Increased circlulating apoptotic lymphocytes in children with Down syndrome. Pediatr Blood Cancer 59:1310–1312

    Article  PubMed  Google Scholar 

  166. Bloemers BL, Bont L, de Weger RA, Otto SA, Borghans JA, Tesselaar K (2011) Decreased thymic ouput accounts for decreased naïve T cell numbers in children with Down syndrome. J Immunol 186:4500–4507

    Article  PubMed  CAS  Google Scholar 

  167. Elsayed SM, Elsayed GM (2009) Phenotype of apoptotic lymphocytes in children with Down syndrome. Immun Ageing 6:2

    Article  PubMed  CAS  Google Scholar 

  168. Corsi MM, Ponti W, Venditti A et al (2003) Proapoptotic activated T-cells in the blood of children with Down’s syndrome: relationship with dietary antigens and intestinal alterations. Int J Tissue React 25:117–125

    PubMed  CAS  Google Scholar 

  169. Antonucci A, Di Baldassarre A, Di Giacomo F et al (1997) Detection of apoptosis in peripheral blood cells of 31 subjects affected by Down syndrome before and after zinc therapy. Ultrastruct Pathol 21:449–452

    Article  PubMed  CAS  Google Scholar 

  170. Epstein CJ, Hofmeister BG, Yee D et al (1985) Stem cell deficiencies and thymic abnormalities in fetal mouse trisomy 16. J Exp Med 162:695–712

    Article  PubMed  CAS  Google Scholar 

  171. Jablonska B, Ford D, Trisler D, Pessac B (2006) The growth capacity of bone marrow CD34 positve cells in culture is drastically rduced in a murine model of Down syndrome. C R Biol 329:726–732

    Article  PubMed  Google Scholar 

  172. Peled-Kamar M, Lotem J, Okon E, Sachs L, Groner Y (1995) Thymic abnormalities and enhanced apoptosis of thymocytes an bone marrow cells in transgenic mice overexpressing Cu/Zn-superoxide dismutase: implications for Down’s syndrome. EMBO J 14:4985–4993

    PubMed  CAS  Google Scholar 

  173. Nabarra B, Casanova M, Paris D, Nicole A, Toyama K, Sinet P-M, Ceballos I, London J (1996) Transgenic mice overexpressing the human Cu/Zn-SOD gene: ultrastructural studies of a premature thymic involution model of Down’s syndrome (trisomy 21). Lab Invest 74:617–626

    PubMed  CAS  Google Scholar 

  174. Seth A, Watson DK, Blair DG, Papas TS (1989) c-ets-2 protooncogene has mitogenic and oncogenic activity. Proc Natl Acad Sci USA 86:7833–7837

    Article  PubMed  CAS  Google Scholar 

  175. Remy P, Baltzinger M (2000) The Ets-transcription factor family in embryonic development: lessons from the amphibian and bird. Oncogene 19:6417–6431

    Article  PubMed  CAS  Google Scholar 

  176. Maroulakou IG, Bowe DB (2000) Expression and function of Ets transcription factors in mammalian development: a regulatory network. Oncogene 19:6432–6442

    Article  PubMed  CAS  Google Scholar 

  177. Taub JW (2001) Relationship of chromosome 21 and acute leukemia in children with Down syndrome. J Pediatr Hematol Oncol 23:175–178

    Article  PubMed  CAS  Google Scholar 

  178. Zipursky A, Thorner P, De Harven F, Christensen H, Doyle J (1994) Myelodysplasia and acute megakaryoblastic lekemia in Down’s syndrome. Leuk Res 18:163–171

    Article  PubMed  CAS  Google Scholar 

  179. Tunstall-Pedoe O, Roy A, Karadimitris A, de la Fuente J, Fisk NM et al (2008) Abnormalities in the mieloide progenitor compartment in Down syndromefetal liver preced acquisition of GATA1 mutations. Blood 112:4507–4511

    Article  PubMed  CAS  Google Scholar 

  180. Chou ST, Opalinska JB, Yao Y, Fernandes MA, Kalota A et al (2008) Trisomy 21 enhances human fetal crythro-megakaryocytic development. Blood 112:4503–4506

    Article  PubMed  CAS  Google Scholar 

  181. Wechsler J, Green M, McDevitt MA, anastasi J, Karp JE et al (2002) Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat Genet 32:148–152

    Article  PubMed  CAS  Google Scholar 

  182. Inaba H, Londero M, Maurer SH, Oneiu M, Ge Y et al (2011) Acute megakaryoblastic leukemia without GATA1 mutation after transient mycloproliferative disorder in an infant without Down syndrome. J Clin Oncol 29:230–233

    Article  Google Scholar 

  183. Ge Y, LaFiura KM, Dombkowski AA, Chen Q, Payton SG, Buck SA, Salagrama S, Diakiw AE, Matherly LH, Taub JW (2008) The role of the proto-oncogene ETS2 in acute megakaryocytic leukemia biology and therapy. Leukemia 22:521–529

    Article  PubMed  CAS  Google Scholar 

  184. Stankiewicz MJ, Crispino JD (2009) ETS2 and ERG promote megakaryopoiesis and synergize with alterations in GATA-1 to immortalize hematopoietic progenitor cells. Blood 113:3337–3347

    Article  PubMed  CAS  Google Scholar 

  185. Birgerr Y, Izraeku S (2012) DYRK1A in Down syndrome: an oncogene or tumor suppressor? J Clin Invest 122:807–810

    Article  CAS  Google Scholar 

  186. Malinge S, Bliss-Moreau M, Kirsammer G, Diebold L, Chlon T, Gurbuxani S, Crispino JD (2012) Increased dosage of the chromosome 21 ortholog Dyrk1a promotes megakaryoblastic leukemia in a murine model of Down syndrome. J Clin Invest 122:948–962

    Article  PubMed  CAS  Google Scholar 

  187. Xavier AC, Edwards H, Dombkowski AA, Tugce BB, Berman JN, Dellaire G, Xie C, Buck S, Matherly LH, Ge Y, Taub JW (2011) A unique role of GATA1s in Down syndrome acute megakaryocytic leukemia biology and therapy. PLoS One 6:e27486

    Article  PubMed  CAS  Google Scholar 

  188. Satge D, Sommelet D, Geneix A, Nishi M, Malet P, Vekemans MA (1998) Tumor profile in Down syndrome. Am J Med Genet 78:207–216

    Article  PubMed  CAS  Google Scholar 

  189. Hasle H, Clemmensen IH, Mikkelsen M (2000) Risks of leukaemia an solid tumours in individuals with Down’s syndrome. Am J Med Genet 78:207–216

    Google Scholar 

  190. Sussan TE, Yang A, Li F, Ostrowski MC, Reeves RH (2008) Trisomy represses ApcMin-mediated tumours in mouse models of Down’s syndrome. Nature 451:73–75

    Article  PubMed  CAS  Google Scholar 

  191. Yang A, Reeves RH (2011) Increased survival following tumorigenesis in Ts65Dn mice that model Down syndrome. Cancer Res 71:3573–3581

    Article  PubMed  CAS  Google Scholar 

  192. Baek KH, Zaslavsky A, Lynch RC, Britt C, Okada Y, Siarey RJ, Lensch MW, Park IH, Yoon SS, Minami T, Korenberg JR, Folkman J, Daley GQ, Aird WC, Galdzicki Z, Ryeom S (2009) Down’s syndrome suppression of tumour growth and the role of the calcineurin inhibitor DSCR1. Nature 459:1126–1130

    Article  PubMed  CAS  Google Scholar 

  193. DeYoung MP, Tress M, Narayanan R (2003) Identification of Down’s syndrome critical locus gene Sim2-s as a drug therapy target for solid tumors. Proc Natl Acad Sci USA 100:4760–4765

    Article  PubMed  CAS  Google Scholar 

  194. Chang H-S, Lin C-H, Yang C-H, Yen M-S, Lai C-R, Chen Y-R, Liang Y-J, Yu WCY (2007) Increased expression of Dyrk1a in HPV16 immortalized keratinocytes enable evasion of apoptosis. Int J Cancer 120:2377–2385

    Article  PubMed  CAS  Google Scholar 

  195. De Wit NJ, urscher HJ, Weidle UH, Ruiter DJ, van Muijen GN (2002) Differentially expressed genes identified in human melanoma cell lines with different metastatic behaviour using high densiy oligonucleotide arrays. Melanoma Res 12:57–69

    Article  PubMed  Google Scholar 

  196. Friedman E (2007) Mirk/Dyrk1B in cancer. J Cell Biochem 102:274–279

    Article  PubMed  CAS  Google Scholar 

  197. Seifert A, Allan LA, Clarke PR (2008) DYRK1A phosphorylates caspase 9 at an inhibitory site and is potently inhibited in human cells by harmine. FEBS J 275:6268–6280

    Article  PubMed  CAS  Google Scholar 

  198. Guo X, Williams JG, Schug TT, Li X (2010) DYRK1A and DYRK3 promotecell survival and phosphorylation and activation of SIRT1. J Biol Chem 285:13223–13232

    Article  PubMed  CAS  Google Scholar 

  199. Sethypathy P, Borel C, Gagnebin M, Grant GR, Deutsch S, Elton TS, Hatzigeorgiour AG, Antonarakis SE (2007) Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3′ untarnslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am J Hum Genet 81:405–413

    Article  CAS  Google Scholar 

  200. Kuhn DE, Nuovo GJ, Martin MM, Malana GE, Pleister AP, Jiang J, Schmittgen TS, Terry AV, Gardiner K, Head E, Feldman DS, Elton TS (2008) Human chromosome 21-derived miRNAs are overexpressed in Down syndrome brains and harts. Biochem Biophys Res Commun 370:473–477

    Article  PubMed  CAS  Google Scholar 

  201. Kuhn DE, Nuovo GJ, Terry AV, Martin MM, Malana GE, Sansom SE, Pleister AP, Beck WE, Head E, Feldman DS, Elton TS (2010) Chromosome 21-derived microRNAs provide an etiological basis for aberrant protein expression in human Down syndrome brains. J Biol Chem 285:1529–1543

    Article  PubMed  CAS  Google Scholar 

  202. Bushati N, Cohen SM (2007) MicroRNA functions. Annu Rev Cell Dev Biol 23:175–205

    Article  PubMed  CAS  Google Scholar 

  203. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed  CAS  Google Scholar 

  204. Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318:1931–1934

    Article  PubMed  CAS  Google Scholar 

  205. Zhang Y, Liao J-M, Zeng SX, Lu H (2011) p53 downregulates Down syndrome-associated DYRK1A through miR-1246. EMBO Rep 12:811–817

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Ministry of Economy and Competitiveness (BFU2011-24755).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Martínez-Cué.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rueda, N., Flórez, J. & Martínez-Cué, C. Apoptosis in Down’s syndrome: lessons from studies of human and mouse models. Apoptosis 18, 121–134 (2013). https://doi.org/10.1007/s10495-012-0785-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-012-0785-3

Keywords

Navigation