, Volume 17, Issue 12, pp 1261–1274 | Cite as

Balance between apoptosis or survival induced by changes in extracellular-matrix composition in human mesangial cells: a key role for ILK-NFκB pathway

  • María del Nogal
  • Alicia Luengo
  • Gemma Olmos
  • Marina Lasa
  • Diego Rodriguez–Puyol
  • Manuel Rodriguez–Puyol
  • Laura Calleros
Original Paper


Renal fibrosis is the final outcome of many clinical conditions that lead to chronic renal failure, characterized by a progressive substitution of cellular elements by extracellular-matrix proteins, in particular collagen type I. The aim of this study was to identify the mechanisms responsible for human mesangial cell survival, conditioned by changes in extracellular-matrix composition. Our results indicate that collagen I induces apoptosis in cells but only after inactivation of the pro-survival factor NFκB by either the super-repressor IκBα or the PDTC inhibitor. Collagen I activates a death pathway, through ILK/GSK-3β-dependent Bim expression. Moreover, collagen I significantly increases NFκB-dependent transcription, IκBα degradation and p65/NFκB translocation to the nucleus; it activates β1 integrin and this is accompanied by increased activity of ILK which leads to AKT activation. Knockdown of ILK or AKT with small interfering RNA suppresses the increase in NFκB activity. NFκB mediates cell survival through the antiapoptotic protein Bcl-xL. Our data suggest that human mesangial cells exposed to abnormal collagen I are protected against apoptosis by a complex mechanism involving integrin β1/ILK/AKT-dependent NFκB activation with consequent Bcl-xL overexpression, that opposes a simultaneously activated ILK/GSK-3β-dependent Bim expression and this dual mechanism may play a role in the progression of glomerular dysfunction.


Apoptosis NFκB ILK Cell–matrix-interactions Collagen Renal fibrosis 



Human mesangial cells


Extracellular matrix


Collagen type I


Collagen type IV


Nuclear factor κB


Inhibitor of NFκB


Integrin-linked kinase


Glycogen synthase kinase-3 β

Supplementary material

10495_2012_769_MOESM1_ESM.doc (46 kb)
Supplementary material 1 (DOC 45 kb)
10495_2012_769_MOESM2_ESM.doc (575 kb)
Supplementary material 2 (DOC 575 kb)


  1. 1.
    López-Novoa JM, Nieto MA (2009) Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol Med 1:303–314PubMedCrossRefGoogle Scholar
  2. 2.
    Liu Y (2006) Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int 69:213–217PubMedCrossRefGoogle Scholar
  3. 3.
    Okada H, Kalluri R (2005) Cellular and molecular pathways that lead to progression and regression of renal fibrogenesis. Curr Mol Med 5:467–474PubMedCrossRefGoogle Scholar
  4. 4.
    Brenner BM, Meyer TW, Hostetter TH (1982) Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N Engl J Med 307:652–659PubMedCrossRefGoogle Scholar
  5. 5.
    Gilbert RD, Turner CL, Gibson J, Bass PS, Haq MR, Cross E, Bunyan DJ, Collins AR, Tapper WJ, Needell JC, Dell B, Morton NE, Temple IK, Robinson DO (2009) Mutations in phospholipase C epsilon 1 are not sufficient to cause diffuse mesangial sclerosis. Kidney Int 75:415–419PubMedCrossRefGoogle Scholar
  6. 6.
    Intentan HD, Schiffrin EL (2001) Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fibrosis. Hypertension 38:581–587CrossRefGoogle Scholar
  7. 7.
    Zeisberg M, Khurana M, Rao VH, Cosgrove D, Rougier JP, Werner MC, Shield CF 3rd, Werb Z, Kalluri R (2006) Stage-specific action of matrix metalloproteinases influences progressive hereditary kidney disease. PLoS Med 3:e100PubMedCrossRefGoogle Scholar
  8. 8.
    Schwartz MA (1997) Integrins, oncogenes, and anchorage independence. J Cell Biol 139:575–578PubMedCrossRefGoogle Scholar
  9. 9.
    Koyama H, Raines EW, Bornfeldt KE, Roberts JM, Ross R (1996) Fibrillar collagen inhibits arterial smooth muscle proliferation through regulation of Cdk2 inhibitors. Cell 87:1069–1078PubMedCrossRefGoogle Scholar
  10. 10.
    Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285:1028–1032PubMedCrossRefGoogle Scholar
  11. 11.
    Hannigan GE, Leung-Hagesteijn C, Fitz-Gibbon L, Coppolino MG, Radeva G, Filmus J, Bell JC, Dedhar S (1996) Regulation of cell adhesion and anchorage-dependent growth by a new beta 1-integrin-linked protein kinase. Nature 379:91–96PubMedCrossRefGoogle Scholar
  12. 12.
    Legate KR, Montañez E, Kudlacek O, Fässler R (2006) ILK, PINCH and parvin: the tIPP of integrin signalling. Nat Rev Mol Cell Biol 7(1):20–31PubMedCrossRefGoogle Scholar
  13. 13.
    Troussard AA, Mawji NM, Ong C, Mui A, St-Arnaud R, Dedhar S (2003) Conditional knock-out of integrin-linked kinase demonstrates an essential role in protein kinase B/Akt activation. J Biol Chem 278:22374–22378PubMedCrossRefGoogle Scholar
  14. 14.
    Sizemore N, Leung S, Stark GR (1999) Activation of phosphatidylinositol 3-kinase in response to interleukin-1 leads to phosphorylation and activation of the NF-kappaB p65/RelA subunit. Mol Cell Biol 19(7):4798–4805PubMedGoogle Scholar
  15. 15.
    Tan C, Mui A, Dedhar S (2002) Integrin-linked kinase regulates inducible nitric oxide synthase and cyclooxygenase-2 expression in an NF-κB-dependent manner. J Biol Chem 277:3109–3116PubMedCrossRefGoogle Scholar
  16. 16.
    Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signalling. Cell 132:344–362PubMedCrossRefGoogle Scholar
  17. 17.
    Perkins ND (2007) Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 8:49–62PubMedCrossRefGoogle Scholar
  18. 18.
    Karin M (2006) NF-kappaB in cancer development and progression. Nature 441:431–436PubMedCrossRefGoogle Scholar
  19. 19.
    Shamas-Din A, Brahmbhatt H, Leber B, Andrews DW (2011) BH3-only proteins: orchestrators of apoptosis. Biochim Biophys Acta 1813(4):508–520PubMedCrossRefGoogle Scholar
  20. 20.
    Guijarro C, Egido J (2001) Transcription factor-kB (NF-kB) and renal disease. Kidney Int 59:415–424PubMedCrossRefGoogle Scholar
  21. 21.
    Sanz AB, Santamaría B, Ruiz-Ortega M, Egido J, Ortiz A (2008) Mechanisms of renal apoptosis in health and disease. J Am Soc Nephrol 19(9):1634–1642PubMedCrossRefGoogle Scholar
  22. 22.
    Ghosh S, Hayden MS (2008) New regulators of NF-kappaB in inflammation. Nat Rev Immunol 8:837–848PubMedCrossRefGoogle Scholar
  23. 23.
    Ross MJ, Martinka S, D’Agati VD, Bruggeman LA (2005) NF-kappaB regulates Fas-mediated apoptosis in HIV-associated nephropathy. J Am Soc Nephrol 16:2403–2411PubMedCrossRefGoogle Scholar
  24. 24.
    Massy ZA, Guijarro C, O’Donnell MP, Kim Y, Kashtan CE, Egido J, Kasiske BL, Keane WF (1999) The central role of nuclear factor-kappa B in mesangial cell activation. Kidney Int 56:S76–S79CrossRefGoogle Scholar
  25. 25.
    Sanz AB, Sanchez-Niño MD, Ramos AM, Moreno JA, Santamaria B, Ruiz-Ortega M, Egido J, Ortiz A (2010) NFkB in renal inflammation. J Am Soc Nephrol 21:1254–1262PubMedCrossRefGoogle Scholar
  26. 26.
    Ma LJ, Fogo AB (2007) Modulation of glomerulosclerosis. Semin Immunopathol 29:385–395PubMedCrossRefGoogle Scholar
  27. 27.
    Iglesias-De La Cruz MC, Ruiz-Torres MP, De Lucio-Cazana FJ, Rodriguez-Puyol M, Rodriguez-Puyol D (2000) Phenotypic modifications of human mesangial cells by extracellular matrix: the importance of matrix in the contractile response to reactive oxygen species. Exp Nephrol 8:97–103PubMedCrossRefGoogle Scholar
  28. 28.
    Calleros L, Lasa M, Toro MJ, Chiloeches A (2006) Low cell cholesterol levels increase NFkappaB activity through a p38 MAPK-dependent mechanism. Cell Signal 18(12):2292–2301PubMedCrossRefGoogle Scholar
  29. 29.
    Ortega-Velazquez R, Diez-Marques ML, Ruiz-Torres MP, Gonzalez-Rubio M, Rodriguez-Puyol M, Rodriguez Puyol D (2003) Arg–Gly–Asp–Ser peptide stimulates transforming growth factor-beta1 transcription and secretion through integrin activation. FASEB J 17(11):1529–1531PubMedGoogle Scholar
  30. 30.
    Stockand JD, Sansom SC (1997) Regulation of filtration rate by glomerular mesangial cells in health and diabetic renal disease. Am J Kidney Dis 29:971–981PubMedCrossRefGoogle Scholar
  31. 31.
    Wu C, Dedhar S (2001) Integrin-linked kinase (ILK) and its interactors: a new paradigm for the coupling of extracellular matrix to actin cytoskeleton and signaling complexes. J Cell Biol 155:505–510PubMedCrossRefGoogle Scholar
  32. 32.
    Persad S, Attwell S, Gray V, Mawji N, Deng JT, Leung D, Yan J, Sanghera J, Walsh MP, Dedhar S (2001) Regulation of protein kinase B/Akt-serine-473 phosphorylation by integrin linked kinase (ILK): critical roles for kinase activity and amino acids arginine-211 and serine-343. J Biol Chem 276:27462–27469PubMedCrossRefGoogle Scholar
  33. 33.
    Kotliarova S, Pastorino S, Kovell L, Kotliarov Y, Song H, Zhang W, Bailey R, Maric D, Zenklusen J, Lee J, Fine H (2008) Glycogen synthase kinase-3 inhibition induces glioma cell death through c-MYC, nuclear factor-KB, and glucose regulation. Cancer Res 68:6643–6651PubMedCrossRefGoogle Scholar
  34. 34.
    Ortega-Velazquez R, Gonzalez-Rubio M, Ruiz-Torres MP, Diez-Marques ML, Iglesias MC, Rodríguez-Puyol M, Rodríguez-Puyol D (2004) Collagen I upregulates extracellular matrix gene expression and secretion of TGF-beta 1 by cultured human mesangial cells. Am J Physiol Cell Physiol 286(6):C1335–C1343PubMedCrossRefGoogle Scholar
  35. 35.
    Alique M, Calleros L, Luengo A, Griera M, Iñiguez MA, Punzón C, Fresno M, Rodríguez-Puyol M, Rodríguez-Puyol D (2011) Changes in extracellular matrix composition regulate cyclooxygenase-2 expression in human mesangial cells. Am J Physiol Cell Physiol 300:C907–C918PubMedCrossRefGoogle Scholar
  36. 36.
    Rodriguez-Iturbe B, Ferrebuz A, Vanegas V, Quiroz Y, Mezzano SA, Vaziri ND (2005) Early and sustained inhibition of nuclear factor-kappaB prevents hypertension in spontaneously hypertensive rats. J Pharmacol Exp Ther 315:51–57PubMedCrossRefGoogle Scholar
  37. 37.
    Fujihara CK, Antunes GR, Mattar AL, Malheiros DMAC, Vieira JM, Zatz R (2007) Chronic inhibition of nuclear factor-kB attenuates renal injury in the 5/6 renal ablation model. Am J Physiol Renal Physiol 292:F92–F99PubMedCrossRefGoogle Scholar
  38. 38.
    Esteban V, Lorenzo O, Ruperez M, Suzuki Y, Mezzano S, Blanco J, Kretzler M, Sugaya T, Egido J, Ruiz-Ortega M (2004) Angiotensin II, via AT1 and AT2 receptors and NF-kappaB pathway, regulates the inflammatory response in unilateral ureteral obstruction. J Am Soc Nephrol 15:1514–1529PubMedCrossRefGoogle Scholar
  39. 39.
    Giannopoulou M, Dai C, Tan X, Wen X, Michalopoulos GK, Liu Y (2008) Hepatocyte growth factor exerts its anti-inflammatory action by disrupting nuclear factor-kB signaling. Am J Pathol 173:30–41PubMedCrossRefGoogle Scholar
  40. 40.
    Tamada S, Nakatani T, Asai T, Tashiro K, Komiya T, Sumi T, Okamura M, Kim S, Iwao H, Kishimoto T, Yamanaka S, Miura K (2003) Inhibition of nuclear factor-κB activation by pyrrolidinedithiocarbamate prevents chronic FK506 nephropathy. Kidney Int 63:306–314PubMedCrossRefGoogle Scholar
  41. 41.
    Elks CM, Mariappan N, Haque M, Guggilam A, Dewan S, Majid A, Francis J (2009) Chronic NFκB blockade reduces cytosolic and mitochondrial oxidative stressand attenuates renal injury and hypertension in SHR. Am J Physiol Renal Physiol 296:F298–F305PubMedCrossRefGoogle Scholar
  42. 42.
    Inoue T, Takenaka T, Hayashi M, Monkawa T, Yoshino J, Shimoda K, Neilson EG, Suzuki H, Okada H (2010) Fibroblast expression of an IκB dominant-negative transgene attenuates renal fibrosis. J Am Soc Nephrol 21:2047–2052PubMedCrossRefGoogle Scholar
  43. 43.
    Henke N, Schmidt-Ullrich R, Dechend R, Park J, Qadri F, Wellner M, Obst M, Gross V, Dietz R, Luft F, Scheidereit C, Muller D (2007) Vascular endothelial cell-specific NFκB suppression attenuates hypertension-induced renal damage. Circ Res 101:268–276PubMedCrossRefGoogle Scholar
  44. 44.
    von Wnuck Lipinski K, Keul P, Ferri N, Lucke S, Heusch G, Fischer JW, Levkau B (2006) Integrin-mediated transcriptional activation of inhibitor of apoptosis proteins protects smooth muscle cells against apoptosis induced by degraded collagen. Circ Res 98:1490–1497CrossRefGoogle Scholar
  45. 45.
    Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2(7):489–501PubMedCrossRefGoogle Scholar
  46. 46.
    Edwards LA, Thiessen B, Dragowska WH, Daynard T, Bally MB, Dedhar S (2005) Inhibition of ILK in PTEN-mutant human glioblastomas inhibits PKB/Akt activation, induces apoptosis, and delays tumor growth. Oncogene 24:3596–3605PubMedCrossRefGoogle Scholar
  47. 47.
    Willis S, Adams J (2005) Life in the balance: how BH3-only proteins induce apoptosis. Curr Opin Cell Biol 17(6):617–625PubMedCrossRefGoogle Scholar
  48. 48.
    Ewings K, Wiggins C, Cook S (2007) Bim and the pro-survival Bcl-2 proteins. Cell Cycle 6(18):2236–2240PubMedCrossRefGoogle Scholar
  49. 49.
    Ewings K, Hadfield-Moorhouse K, Wiggins C, Wickenden J, Balmanno K, Gilley R, Degenhardt K, White E, Cook S (2007) ERK1/2-dependent phosphorylation of BimEL promotes its rapid dissociation from Mcl-1 and Bcl-xL. EMBO J 26:2856–2867PubMedCrossRefGoogle Scholar
  50. 50.
    Ren D, Tu H, Kim H, Wang G, Bean G, Takeuchi O, Jeffers J, Zambetti G, Hsieh J, Cheng E (2010) BID, BIM, and PUMA are essential for activation of the BAX- and BAK-dependent cell death program. Science 330(6009):1390–1393PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • María del Nogal
    • 1
    • 5
    • 6
  • Alicia Luengo
    • 1
    • 5
    • 6
  • Gemma Olmos
    • 1
    • 5
    • 6
  • Marina Lasa
    • 4
  • Diego Rodriguez–Puyol
    • 2
    • 3
    • 5
    • 6
  • Manuel Rodriguez–Puyol
    • 1
    • 5
    • 6
  • Laura Calleros
    • 1
    • 5
    • 6
  1. 1.Department of Physiology, Facultad de MedicinaUniversidad de AlcaláMadridSpain
  2. 2.Department of MedicineUniversidad de AlcaláMadridSpain
  3. 3.Nephrology Section and Research Unit FoundationHospital Universitario Príncipe de AsturiasMadridSpain
  4. 4.Departamento de Bioquímica–Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones CientíficasUniversidad Autónoma de MadridMadridSpain
  5. 5.IRSINMadridSpain
  6. 6.REDinREN (Instituto de Salud Carlos III)MadridSpain

Personalised recommendations