Skip to main content

Advertisement

Log in

Histone H3 lysine 27 and 9 hypermethylation within the Bad promoter region mediates 5-Aza-2′-deoxycytidine-induced Leydig cell apoptosis: implications of 5-Aza-2′-deoxycytidine toxicity to male reproduction

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

5-Aza-2′-deoxycitidine (5-Aza), an anticancer agent, results in substantial toxicity to male reproduction, causing a decline in sperm quality associated with reduced testosterone. Here, we report that 5-Aza increased the apoptotic protein Bad epigenetically in the testosterone-producing mouse TM3 Leydig cell line. 5-Aza decreased cell viability in a dose- and time-dependent manner with concomitant increase in Bad protein. This increase is accompanied by increased cleavages of both poly ADP ribose polymerase and caspase-3. Flow cytometric analysis further supported 5-Aza-derived apoptosis in TM3 cells. Bisulfite sequencing analysis failed to identify putative methylcytosine site(s) in CpG islands of the Bad promoter. A chromatin immunoprecipitation assay revealed decreased levels of trimethylation at lysine 27 of histone H3 (H3K27-3me) and H3K9-3me in the Bad promoter region in response to 5-Aza treatment. Knock-down by siRNA of enhancer of zeste homologue 2 (EZH2), a histone methyltransferase responsible for H3K27-3me, or demethylation of H3K9-3me by BIX-01294 showed significantly increased levels in Bad expression and consequent Leydig cell apoptosis. In conclusion, our results demonstrate for the first time that Bad expression is regulated at least by EZH2-mediated H3K27-3me or G9a-like protein/euchromatic histone methyltransferase 1 (GLP/Eu-HMTase1)-mediated H3K9-3me in mouse TM3 Leydig cells, which may be implicated in 5-Aza-derived toxicity to male reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jüttermann R, Li E, Jaenisch R (1994) Toxicity of 5-aza-2′-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc Natl Acad Sci USA 9:11797–11801

    Article  Google Scholar 

  2. Wijermans P, Lubbert M, Verhoef G, Bosly A, Ravoet C, Andre M, Ferrant A (2000) Low-dose 5-Aza-2′-deoxycitidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter phase II study in elderly patients. J Clin Oncol 18:956–962

    PubMed  CAS  Google Scholar 

  3. Kaminskas E, Farrell A, Abraham S, Baird A, Hsieh LS, Lee SL, Leighton JK, Patel H, Rahman A, Sridhara R, Wang YC, Pazdur R (2005) Approval summary: azacitidine for treatment of myelodysplastic syndrome subtypes. Clin Cancer Res 11:3604–3608

    Article  PubMed  CAS  Google Scholar 

  4. Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7:21–33

    Article  PubMed  CAS  Google Scholar 

  5. Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692

    Article  PubMed  CAS  Google Scholar 

  6. Zhu WG, Helleman T, Ke Y, Wang P, Lu S, Duan W, Dai Z, Tong T, Villalona-Calero MA, Plass C, Otterson GA (2004) 5-aza-2′-deoxycytidine activates the p53/p21Waf1/Cip1 pathway to inhibit cell proliferation. J Biol Chem 279:15161–15166

    Article  PubMed  CAS  Google Scholar 

  7. Nishioka C, Ikezoe T, Yang J, Komatsu N, Koeffler HP, Yokoyama A (2009) Blockade of MEK signaling potentiates 5-Aza-2′-deoxycytidine-induced apoptosis and upregulation of p21(waf1) in acute myelogenous leukemia cells. Int J Cancer 125:1168–1176

    Article  PubMed  CAS  Google Scholar 

  8. Bae J, Hsu SY, Leo CP, Zell K, Hsueh AJW (2001) Underphosphorylated BAD interacts with diverse antiapoptotic Bcl2-family proteins to regulate apoptosis. Apoptosis 6:319–330

    Article  PubMed  CAS  Google Scholar 

  9. Tan Y, Dementer MR, Ruan D, Comb MJ (2000) BAD Ser-155 phosphorylation regulates BAD/Bcl-XL interaction and cell survival. J Biol Chem 275:25865–25869

    Article  PubMed  CAS  Google Scholar 

  10. Zha J, Harada H, Yang E, Jocket J, Korsmeyer SJ (1996) Serine phosphorylation of death agonist bad in response to survival factor results in binding to 14–3-3 not BCL-XL. Cell 87:619–628

    Article  PubMed  CAS  Google Scholar 

  11. Ranger AM, Zha J, Harada H, Datta SR, Danial NN, Gilmore AP, Kutok JL, Le Beau MM, Greenberg ME, Korsmeyer SJ (2003) Bad-deficient mice develop diffuse large B cell lymphoma. Proc Natl Acad Sci USA 100:9324–9329

    Article  PubMed  Google Scholar 

  12. Shin MK, Kim MK, Bae YS, Jo I, Lee SJ, Chung CP, Park YJ, Min DS (2008) A novel collagen-binding peptide promotes osteogenic differentiation via Ca2+/calmodulin-dependent protein kinase II/ERK/AP-1 signaling pathway in human bone marrow-derived mesenchymal stem cells. Cell Signal 20:613–624

    Article  PubMed  CAS  Google Scholar 

  13. Kim H, Choi JY, Lee JM, Park YS, Suh H, Song HR, Jo SA, Jo I (2008) Dexamethasone increases angiopoietin-1 and quiescent hematopoietic stem cells: a novel mechanism of dexamethasone-induced hematoprotection. FEBS Lett 582:3509–3514

    Article  PubMed  CAS  Google Scholar 

  14. Seo J, Kim YO, Jo I (2009) Differential expression of stromal cell-derived factor 1 in human brain microvascular endothelial cells and pericytes involves histone modifications. Biochem Biophys Res Commun 328:519–524

    Article  Google Scholar 

  15. Nguyen CT, Weisenberger DJ, Velicescu M, Gonzales FA, Lin JC, Liang G, Jones PA (2002) Histone H3-lysine 9 methylation is associated with aberrant gene silencing in cancer cells and is rapidly reversed by 5-aza-2′-deoxycytidine. Cancer Res 62:6456–6461

    PubMed  CAS  Google Scholar 

  16. Kou CY, Lau SL, Au KW, Leung PY, Chim SS, Fung KP, Waye MM, Tsui SK (2010) Epigenetic regulation of neonatal cardiomyocytes differentiation. Biochem Biophys Res Commun 400:278–283

    Article  PubMed  CAS  Google Scholar 

  17. Simon JA, Lange CA (2008) Roles of the EZH2 histone methyltransferase in cancer. Epigenet Mutat Res 47:21–29

    Article  Google Scholar 

  18. Wu ZL, Zheng SS, Li ZM, Qiao YY, Aau MY, Yu Q (2010) Polycomb protein EZH2 regulates E2F1-dependent apoptosis through epigenentically modulating Bim expression. Cell Death Differ 17:801–810

    Article  PubMed  CAS  Google Scholar 

  19. Fujii S, Ito K, Ito Y, Ochiai A (2008) Enhancer of zeste homologue 2 (EZH2) down-regulates RUNX3 by increasing hisone H3 methylation. J Biol Chem 283:17324–17332

    Article  PubMed  CAS  Google Scholar 

  20. Kubicek S, O’Sullivan RJ, August EM, Hickey ER, Zhang Q, Teodoro ML, Rea S, Mechtler K, Kowalski JA, Homon CA, Kelly TA, Jenuwein T (2007) Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol Cell 25:473–481

    Article  PubMed  CAS  Google Scholar 

  21. Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ (1995) Bad, a heterodimeric partner for Bcl-xL and Bcl-2, displaves Bax and promotes cell death. Cell 80:285–291

    Article  PubMed  CAS  Google Scholar 

  22. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241

    Article  PubMed  CAS  Google Scholar 

  23. Teo K, Gemmell L, Mukherjee R, Traynor P, Edwards J (2007) Bad expression influences time to androgen escape in prostate cancer. Br J Urol Int 100:691–696

    Article  Google Scholar 

  24. Cannings E, Kirkeqaard T, Tovey SM, Dunne B, Cooke TG, Bartlett JM (2007) Bad expression predicts outcome in patients treated with tamoxifen. Breast Cancer Res Treat 102:173–179

    Article  PubMed  CAS  Google Scholar 

  25. Jiang P, Du W, Heese K, Wu M (2006) The bad guy cooperate with good cop p53: Bad is transcriptionally up-regulated by p53 and forms a Bad/p53 complex at the mitochondria to induce apoptosis. Mol Cell Biol 26:9071–9082

    Article  PubMed  CAS  Google Scholar 

  26. Lee SH, Kim J, Kim WH, Lee YM (2009) Hypoxic silencing of tumor suppressor RUNX3 by histone modification in gastric cancer cells. Oncogene 28:184–194

    Article  PubMed  CAS  Google Scholar 

  27. Liu Y, Hong Y, Zhao Y, Ismail TM, Wong Y, Eu KW (2008) Histone H3 (lys-9) deacetylation is associated with transcriptional silencing of E-cadherin in colorectal cancer cell line. Cancer Investig 26:575–582

    Article  CAS  Google Scholar 

  28. Tachibana M, Sugimoto K, Nozaki M, Ueda J, Ohta T, Ohki M, Fukuda M, Takeda N, Niida H, Shinkai Y (2002) G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev 16:1779–1791

    Article  PubMed  CAS  Google Scholar 

  29. Ogawa H, Ishiguro K, Gaubatz S, Livingston DM, Nakatani Y (2002) A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells. Science 296:1132–1136

    Article  PubMed  CAS  Google Scholar 

  30. Doerksen T, Benoit G, Trasler JM (2000) Deoxyribonucleic acid hypomethylation of male germ cells by mitotic and meiotic exposure to 5-azacytidine is associated with altered testicular histology. Endocrinology 141:3235–3244

    Article  PubMed  CAS  Google Scholar 

  31. Gong YG, Wang YQ, Gu M, Feng MM, Zhang W, Ge RS (2009) Deprival of testicular innvervation induces apoptosis of leydig cells via caspase-8-dependent signaling: a novel survival pathway revealed. Biochem Biophys Res Commun 382:165–170

    Article  PubMed  CAS  Google Scholar 

  32. Henriksen K, Hakovirta H, Parvinen M (1995) Testosterone inhibits and induces apoptosis in rat seminiferous tubules in a stage-specific manner: in situ quantification in squash preparations after administration of ethane dimethane sulfonate. Endocrinology 136:3285–3291

    Article  PubMed  CAS  Google Scholar 

  33. Tapanainen JS, Tilly JL, Vihko KK, Hsueh AJ (1993) Hormonal control of apoptotic cell death in the testis: gonadotropins and androgens as testicular cell survival factors. Mol Endocrinol 7:643–650

    Article  PubMed  CAS  Google Scholar 

  34. Chung JY, Kim JY, Kim YJ, Jung SJ, Park JE, Lee SG, Kim JT, Oh S, Lee CJ, Yoon YD, Yoo YH, Kim JH (2007) Cellular defense mechanisms against benzo[a]pyrene in testicular leydig cells: implications of p53, arylhydrocarbon receptor, and cytochrome P450 1A1 status. Endocrinology 148:6134–6144

    Article  PubMed  CAS  Google Scholar 

  35. Mohamed EA, Song WH, Oh SA, Park YJ, You YA, Lee S, Choi JY, Kim YJ, Jo I, Pang MG (2010) The transgenerational impact of benzo(a)pyrene on murine male fertility. Hum Reprod 25:2427–2433

    Article  CAS  Google Scholar 

  36. Anway MD, Leathers C, Skinner MK (2006) Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease. Endocrinology 147:5515–5523

    Article  PubMed  CAS  Google Scholar 

  37. Newbold RR, Hanson RB, Jefferson WN, Bullock BC, Haseman J, McLachlan JA (2000) Proliferation lesions and reproductive tract tumors in male descendants of mice exposed developmentally to diethylstilbestrol. Carcinogenesis 21:1355–1363

    Article  PubMed  CAS  Google Scholar 

  38. Rosenfeld CS (2010) Animal models to study environmental epigenetics. Biol Reprod 82:473–488

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Research Foundation (NRF-2008-0061393) and the Korea Food and Drug Administration (08512KFDA418).

Conflict of interest

The authors have declared that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inho Jo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, JY., Lee, S., Hwang, S. et al. Histone H3 lysine 27 and 9 hypermethylation within the Bad promoter region mediates 5-Aza-2′-deoxycytidine-induced Leydig cell apoptosis: implications of 5-Aza-2′-deoxycytidine toxicity to male reproduction. Apoptosis 18, 99–109 (2013). https://doi.org/10.1007/s10495-012-0768-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-012-0768-4

Keywords

Navigation