Skip to main content
Log in

Nifedipine prevents etoposide-induced caspase-3 activation, prenyl transferase degradation and loss in cell viability in pancreatic β-cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Emerging evidence implicates novel roles for post-translational prenylation (i.e., farnesylation and geranylgeranylation) of various signaling proteins in a variety of cellular functions including hormone secretion, survival and apoptosis. In the context of cellular apoptosis, it has been shown previously that caspase-3 activation, a hallmark of mitochondrial dysregulation, promotes hydrolysis of several key cellular proteins. We report herein that exposure of insulin-secreting INS 832/13 cells or normal rat islets to etoposide leads to significant activation of caspase-3 and subsequent degradation of the common α-subunit of farnesyl/geranylgeranyl transferases (FTase/GGTase). Furthermore, the above stated signaling steps were prevented by Z-DEVD-FMK, a known inhibitor of caspase-3. In addition, treatment of cell lysates with recombinant caspase-3 also caused FTase/GGTase α-subunit degradation. Moreover, nifedipine, a calcium channel blocker, markedly attenuated etoposide-induced caspase-3 activation, FTase/GGTase α-subunit degradation in INS 832/13 cells and normal rat islets. Further, nifedipine significantly restored etoposide-induced loss in metabolic cell viability in INS 832/13 cells. Based on these findings, we conclude that etoposide induces loss in cell viability by inducing mitochondrial dysfunction, caspase-3 activation and degradation of FTase/GGTase α-subunit. Potential significance of these findings in the context of protein prenylation and β-cell survival are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CSP3:

Caspase-3

ET:

Etoposide

FTase α:

Farnesyltransferase α subunit

GGTase α:

Geranylgeranyltransferase α subunit

Δ FTase/GGTase:

Hydrolytic product of FTase/GGTase α-subunit

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

Nif:

Nifedipine

References

  1. Kowluru A (2010) Small G proteins in islet beta-cell function. Endocr Rev 31:52–78

    Article  PubMed  CAS  Google Scholar 

  2. Robertson RP, Seaquist ER, Walseth TF (1991) G proteins and modulation of insulin secretion. Diabetes 40:1–6

    Article  PubMed  CAS  Google Scholar 

  3. Cox AD, Der CJ (1992) Protein prenylation: more than just glue? Curr Opin Cell Biol 4:1008–1016

    Article  PubMed  CAS  Google Scholar 

  4. Metz SA, Rabaglia ME, Stock JB, Kowluru A (1993) Modulation of insulin secretion from normal rat islets by inhibitors of the post-translational modifications of GTP-binding proteins. Biochem J. 295:31–40

    PubMed  CAS  Google Scholar 

  5. Kowluru A (2003) Regulatory roles for small G proteins in the pancreatic beta-cell: lessons from models of impaired insulin secretion. Am J Physiol: Endocrinol Metab 285:E669–E684

    CAS  Google Scholar 

  6. Casey PJ, Seabra MC (1996) Protein prenyltransferases. J Biol Chem 271:5289–5292

    Article  PubMed  CAS  Google Scholar 

  7. Lane KT, Beese LS (2006) Thematic review series: lipid posttranslational modifications. Structural biology of protein farnesyltransferase and geranylgeranyltransferase type I. J Lipid Res 47:681–699

    Article  PubMed  CAS  Google Scholar 

  8. Amin R, Chen HQ, Tannous M, Gibbs R, Kowluru A (2002) Inhibition of glucose- and calcium-induced insulin secretion from betaTC3 cells by novel inhibitors of protein isoprenylation. J Pharmacol Exp Ther 303:82–88

    Article  PubMed  CAS  Google Scholar 

  9. Veluthakal R, Kaur H, Goalstone M, Kowluru A (2007) Dominant-negative alpha-subunit of farnesyl- and geranyltransferase inhibits glucose-stimulated, but not KCl-stimulated, insulin secretion in INS 832/13 cells. Diabetes 56:204–210

    Article  PubMed  CAS  Google Scholar 

  10. Kowluru A (2008) Protein prenylation in glucose-induced insulin secretion from the pancreatic islet beta-cell: a perspective. J Cell Mol Med 12:164–173

    Article  PubMed  CAS  Google Scholar 

  11. Kowluru A, Veluthakal R, Rhodes CJ, Kamath V, Syed I, Koch BJ (2010) Protein farnesylation-dependent Raf/extracellular signal-related kinase signaling links to cytoskeletal remodeling to facilitate glucose-induced insulin secretion in pancreatic beta-cells. Diabetes 59:967–977

    Article  PubMed  CAS  Google Scholar 

  12. Goalstone M, Kamath V, Kowluru A (2010) Glucose activates prenyltransferases in pancreatic islet beta-cells. Biochem Biophys Res Commun 391:895–898

    Article  PubMed  CAS  Google Scholar 

  13. Kim KW, Chung HH, Chung CW et al (2001) Inactivation of farnesyltransferase and geranylgeranyltransferase I by caspase-3: cleavage of the common alpha subunit during apoptosis. Oncogene 20:358–366

    Article  PubMed  CAS  Google Scholar 

  14. Collier JJ, Fueger PT, Hohmeier HE, Newgard CB (2006) Pro- and antiapoptotic proteins regulate apoptosis but do not protect against cytokine-mediated cytotoxicity in rat islets and beta-cell lines. Diabetes 55:1398–1406

    Article  PubMed  CAS  Google Scholar 

  15. Duchen MR (2000) Mitochondria and calcium: from cell signalling to cell death. J Physiol 529:57–68

    Article  PubMed  CAS  Google Scholar 

  16. Sharma AK, Rohrer B (2004) Calcium-induced calpain mediates apoptosis via caspase-3 in a mouse photoreceptor cell line. J Biol Chem 279:35564–35572

    Article  PubMed  CAS  Google Scholar 

  17. Tripathi A, Chaube SK (2012) High cytosolic free calcium level signals apoptosis through mitochondria-caspase mediated pathway in rat eggs cultured in vitro. Apoptosis 17:439–448

    Article  PubMed  CAS  Google Scholar 

  18. Smith MA, Schnellmann RG (2012) Calpains mitochondria and apoptosis. Cardiovasc Res. doi:10.1093/cvr/cvs163

    PubMed  Google Scholar 

  19. Robertson JD, Gogvadze V, Zhivotovsky B, Orrenius S (2000) Distinct pathways for stimulation of cytochrome c release by etoposide. J Biol Chem 275:32438–32443

    Article  PubMed  CAS  Google Scholar 

  20. Parihar A, Parihar MS, Ghafourifar P (2008) Significance of mitochondrial calcium and nitric oxide for apoptosis of human breast cancer cells induced by tamoxifen and etoposide. Int J Mol Med 21:317–324

    PubMed  CAS  Google Scholar 

  21. Sorkin EM, Clissold SP, Brogden RN (1985) Nifedipine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy, in ischaemic heart disease, hypertension and related cardiovascular disorders. Drugs. 30:182–274

    Article  PubMed  CAS  Google Scholar 

  22. Bean BP (1989) Classes of calcium channels in vertebrate cells. Annu Rev Physiol 51:367–384

    Article  PubMed  CAS  Google Scholar 

  23. Sane KM, Mynderse M, LaLonde DT et al (2010) A novel geranylgeranyl transferase inhibitor in combination with lovastatin inhibits proliferation and induces autophagy in STS-26T MPNST cells. J Pharmacol Exp Ther 333:23–33

    Article  PubMed  CAS  Google Scholar 

  24. Geryk-Hall M, Yang Y, Hughes DP (2010) Driven to death: inhibition of farnesylation increases ras activity in osteosarcoma and promotes growth arrest and cell death. Mol Cancer Ther 9:1111–1119

    Article  PubMed  CAS  Google Scholar 

  25. Li G, Segu VB, Rabaglia ME, Luo RH, Kowluru A, Metz SA (1998) Prolonged depletion of guanosine triphosphate induces death of insulin-secreting cells by apoptosis. Endocrinology 139:3752–3762

    Article  PubMed  CAS  Google Scholar 

  26. Wang Y, Gao L, Li Y, Chen H, Sun Z (2011) Nifedipine protects INS-1 beta-cell from high glucose-induced ER Stress and apoptosis. Int J Mol Sci 12:7569–7580

    Article  PubMed  CAS  Google Scholar 

  27. Xu G, Chen J, Jing G, Shalev A (2012) Preventing β-cell loss and diabetes with calcium channel blockers. Diabetes 61:848–856

    Article  PubMed  CAS  Google Scholar 

  28. Kyathanahalli CN, Kowluru A (2011) A farnesylated G-protein suppresses Akt phosphorylation in INS 832/13 cells and normal rat islets: regulation by pertussis toxin and PGE(2). Biochem Pharmacol 81:1237–1247

    Article  PubMed  CAS  Google Scholar 

  29. Lutz RJ, Trujillo MA, Denham KS, Wenger L, Sinensky M (1992) Nucleoplasmic localization of prelamin A: implications for prenylation-dependent lamin A assembly into the nuclear lamina. Proc Natl Acad Sci USA 89:3000–3004

    Article  PubMed  CAS  Google Scholar 

  30. Prokocimer M, Davidovich M, Nissim-Rafinia M et al (2009) Nuclear lamins: key regulators of nuclear structure and activities. J Cell Mol Med 13:1059–1085

    Article  PubMed  CAS  Google Scholar 

  31. Chang SY, Hudon-Miller SE, Yang SH et al (2012) Inhibitors of protein geranylgeranyltransferase-I lead to prelamin A accumulation in cells by inhibiting ZMPSTE24. J Lipid Res 53:1176–1182

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by a Merit Review award [to AK; 1BX000469] from the Department of Veterans Affairs, Veterans Health Administration, Office of Research and Development Biomedical Laboratory Research and Development], and by the NIH/NIDDK [RO1 DK74921]. AK is also the recipient of a Senior Research Career Scientist Award from the Department of VA. The authors would like to thank Prof. Chris Newgard for INS 832/13 cells. We thank Dr. Wasanthi Subasinghe for excellent technical assistance in these studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjaneyulu Kowluru.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arora, D.K., Mohammed, A.M. & Kowluru, A. Nifedipine prevents etoposide-induced caspase-3 activation, prenyl transferase degradation and loss in cell viability in pancreatic β-cells. Apoptosis 18, 1–8 (2013). https://doi.org/10.1007/s10495-012-0763-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-012-0763-9

Keywords

Navigation