Skip to main content
Log in

Necrosis-like death can engage multiple pro-apoptotic Bcl-2 protein family members

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Necroptosis is a physiologically relevant mode of cell death with some well-described initiating events, but largely unknown executioners. Here we investigated necrostatin-1 (Nec-1) sensitive death elicited by different necroptosis stimuli in L929 mouse fibrosarcoma cells, mouse embryonic fibroblasts (MEF) and bone marrow-derived macrophages. We found that TNFα- or zVAD-induced necroptosis occurs independently of the recently implicated executioners Bmf or PARP-2, but can involve the Bcl-2 family proteins Bid and Bak. Furthermore, this type of necroptosis is associated with mitochondrial cytochrome c release and partly sensitive to cyclosporine A inhibition, suggesting a cross talk with the mitochondrial permeability transition pore. Necroptosis triggered by cadmium (Cd) exposure caused fully Nec-1-sensitive and caspase-independent death in L929 cells that was associated with autocrine TNFα-mediated feed-forward signalling. In MEF Cd-exposure elicited a mixed mode of cell death that was to some extent Nec-1-sensitive but also displayed features of apoptosis. It was partly dependent on Bmf and Bax/Bak, proteins typically considered to act pro-apoptotic, but ultimately insensitive to caspase inhibition. Overall, our study indicates that inducers of “extrinsic” and “intrinsic” necroptosis can both trigger TNF-receptor signalling. Further, necroptosis may depend on mitochondrial changes engaging proteins considered critical for MOMP during apoptosis that ultimately contribute to caspase-independent necrotic cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11:700–714

    Article  PubMed  CAS  Google Scholar 

  2. Laster SM, Wood JG, Gooding LR (1988) Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. J Immunol 141:2629–2634

    PubMed  CAS  Google Scholar 

  3. Chan FK, Shisler J, Bixby JG et al (2003) A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses. J Biol Chem 278:51613–51621

    Article  PubMed  CAS  Google Scholar 

  4. Xu Y, Huang S, Liu ZG, Han J (2006) Poly(ADP-ribose) polymerase-1 signaling to mitochondria in necrotic cell death requires RIP1/TRAF2-mediated JNK1 activation. J Biol Chem 281:8788–8795

    Article  PubMed  CAS  Google Scholar 

  5. Zong WX, Ditsworth D, Bauer DE, Wang ZQ, Thompson CB (2004) Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev 18:1272–1282

    Article  PubMed  CAS  Google Scholar 

  6. Degterev A, Huang Z, Boyce M et al (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119

    Article  PubMed  CAS  Google Scholar 

  7. Hsu TS, Yang PM, Tsai JS, Lin LY (2009) Attenuation of cadmium-induced necrotic cell death by necrostatin-1: potential necrostatin-1 acting sites. Toxicol Appl Pharmacol 235:153–162

    Article  PubMed  CAS  Google Scholar 

  8. Krumschnabel G, Ebner HL, Hess MW, Villunger A (2010) Apoptosis and necroptosis are induced in rainbow trout cell lines exposed to cadmium. Aquat Toxicol 99:73–85

    Article  PubMed  CAS  Google Scholar 

  9. Oberst A, Dillon CP, Weinlich R et al (2011) Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471:363–367

    Article  PubMed  CAS  Google Scholar 

  10. Kaiser WJ, Upton JW, Long AB et al (2011) RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471:368–372

    Article  PubMed  CAS  Google Scholar 

  11. Zhang H, Zhou X, McQuade T, Li J, Chan FK, Zhang J (2011) Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature 471:373–376

    Article  PubMed  CAS  Google Scholar 

  12. Temkin V, Huang Q, Liu H, Osada H, Pope RM (2006) Inhibition of ADP/ATP exchange in receptor-interacting protein-mediated necrosis. Mol Cell Biol 26:2215–2225

    Article  PubMed  CAS  Google Scholar 

  13. Wu YT, Tan HL, Huang Q, Sun XJ, Zhu X, Shen HM (2011) zVAD-induced necroptosis in L929 cells depends on autocrine production of TNFalpha mediated by the PKC-MAPKs-AP-1 pathway. Cell Death Differ 18:26–37

    Article  PubMed  CAS  Google Scholar 

  14. Hitomi J, Christofferson DE, Ng A et al (2008) Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135:1311–1323

    Article  PubMed  CAS  Google Scholar 

  15. Puthalakath H, Villunger A, O’Reilly LA et al (2001) Bmf: a proapoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis. Science 293:1829–1832

    Article  PubMed  CAS  Google Scholar 

  16. Cabon L, Galan-Malo P, Bouharrour A et al (2012) BID regulates AIF-mediated caspase-independent necroptosis by promoting BAX activation. Cell Death Differ 19:245–256

    Article  PubMed  CAS  Google Scholar 

  17. Wang Z, Jiang H, Chen S, Du F, Wang X (2012) The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148:228–243

    Article  PubMed  CAS  Google Scholar 

  18. Sun L, Wang H, Wang Z et al (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148:213–227

    Article  PubMed  CAS  Google Scholar 

  19. Lo SC, Hannink M (2006) PGAM5, a Bcl-XL-interacting protein, is a novel substrate for the redox-regulated Keap1-dependent ubiquitin ligase complex. J Biol Chem 281:37893–37903

    Article  PubMed  CAS  Google Scholar 

  20. Jourdain A, Martinou JC (2009) Mitochondrial outer-membrane permeabilization and remodelling in apoptosis. Int J Biochem Cell Biol 41:1884–1889

    Article  PubMed  CAS  Google Scholar 

  21. Lomonosova E, Chinnadurai G (2008) BH3-only proteins in apoptosis and beyond: an overview. Oncogene 27(Suppl 1):S2–S19

    Article  PubMed  CAS  Google Scholar 

  22. Labi V, Erlacher M, Kiessling S et al (2008) Loss of the BH3-only protein Bmf impairs B cell homeostasis and accelerates gamma irradiation-induced thymic lymphoma development. J Exp Med 205:641–655

    Article  PubMed  CAS  Google Scholar 

  23. Festjens N, Vanden Berghe T, Vandenabeele P (2006) Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim Biophys Acta 1757:1371–1387

    Article  PubMed  CAS  Google Scholar 

  24. Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139:271–279

    Article  PubMed  CAS  Google Scholar 

  25. Manzl C, Krumschnabel G, Bock F et al (2009) Caspase-2 activation in the absence of PIDDosome formation. J Cell Biol 185:291–303

    Article  PubMed  CAS  Google Scholar 

  26. Yuan XM, Li W, Dalen H et al (2002) Lysosomal destabilization in p53-induced apoptosis. Proc Natl Acad Sci USA 99:6286–6291

    Article  PubMed  CAS  Google Scholar 

  27. Ozes AR, Feoktistova K, Avanzino BC, Fraser CS (2011) Duplex unwinding and ATPase activities of the DEAD-box helicase eIF4A are coupled by eIF4G and eIF4B. J Mol Biol 412:674–687

    Article  PubMed  Google Scholar 

  28. Chautan M, Chazal G, Cecconi F, Gruss P, Golstein P (1999) Interdigital cell death can occur through a necrotic and caspase-independent pathway. Curr Biol 9:967–970

    Article  PubMed  CAS  Google Scholar 

  29. Martinet W, Schrijvers DM, Herman AG, De Meyer GR (2006) z-VAD-fmk-induced non-apoptotic cell death of macrophages: possibilities and limitations for atherosclerotic plaque stabilization. Autophagy 2:312–314

    PubMed  CAS  Google Scholar 

  30. Templeton DM, Liu Y (2010) Multiple roles of cadmium in cell death and survival. Chem Biol Interact 188:267–275

    Article  PubMed  CAS  Google Scholar 

  31. Artus C, Boujrad H, Bouharrour A et al (2010) AIF promotes chromatinolysis and caspase-independent programmed necrosis by interacting with histone H2AX. EMBO J 29:1585–1599

    Article  PubMed  CAS  Google Scholar 

  32. Cho Y, McQuade T, Zhang H, Zhang J, Chan FK (2011) RIP1-dependent and independent effects of necrostatin-1 in necrosis and T cell activation. PLoS ONE 6:e23209

    Article  PubMed  CAS  Google Scholar 

  33. Jouan-Lanhouet S, Arshad MI, Piquet-Pellorce C, et al. (2012) TRAIL induces necroptosis involving RIPK1/RIPK3-dependent PARP-1 activation. Cell Death Differ. doi:10.1038/cdd.2012.90

  34. Ha HC, Snyder SH (1999) Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc Natl Acad Sci USA 96:13978–13982

    Article  PubMed  CAS  Google Scholar 

  35. Kaufmann SH, Desnoyers S, Ottaviano Y, Davidson NE, Poirier GG (1993) Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res 53:3976–3985

    PubMed  CAS  Google Scholar 

  36. Gobeil S, Boucher CC, Nadeau D, Poirier GG (2001) Characterization of the necrotic cleavage of poly(ADP-ribose) polymerase (PARP-1): implication of lysosomal proteases. Cell Death Differ 8:588–594

    Article  PubMed  CAS  Google Scholar 

  37. Pink JJ, Wuerzberger-Davis S, Tagliarino C et al (2000) Activation of a cysteine protease in MCF-7 and T47D breast cancer cells during beta-lapachone-mediated apoptosis. Exp Cell Res 255:144–155

    Article  PubMed  CAS  Google Scholar 

  38. Berghe TV, Vanlangenakker N, Parthoens E et al (2010) Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ 17:922–930

    Article  Google Scholar 

  39. Wu YT, Tan HL, Huang Q et al (2008) Autophagy plays a protective role during zVAD-induced necrotic cell death. Autophagy 4:457–466

    PubMed  CAS  Google Scholar 

  40. Chen SY, Chiu LY, Maa MC, Wang JS, Chien CL, Lin WW (2011) zVAD-induced autophagic cell death requires c-Src-dependent ERK and JNK activation and reactive oxygen species generation. Autophagy 7:217–228

    Article  PubMed  CAS  Google Scholar 

  41. Strozyk E, Poppelmann B, Schwarz T, Kulms D (2006) Differential effects of NF-kappaB on apoptosis induced by DNA-damaging agents: the type of DNA damage determines the final outcome. Oncogene 25:6239–6251

    Article  PubMed  CAS  Google Scholar 

  42. Swennen EL, Dagnelie PC, Van den Beucken T, Bast A (2008) Radioprotective effects of ATP in human blood ex vivo. Biochem Biophys Res Commun 367:383–387

    Article  PubMed  CAS  Google Scholar 

  43. Biton S, Ashkenazi A (2011) NEMO and RIP1 control cell fate in response to extensive DNA damage via TNF-alpha feedforward signaling. Cell 145:92–103

    Article  PubMed  CAS  Google Scholar 

  44. Tenev T, Bianchi K, Darding M et al (2011) The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol Cell 43:432–448

    Article  PubMed  CAS  Google Scholar 

  45. Irrinki KM, Mallilankaraman K, Thapa RJ et al (2011) Requirement of FADD, NEMO and BAX/BAK for aberrant mitochondrial function in TNF{alpha}-induced necrosis. Mol Cell Biol 31:3745–3758

    Article  PubMed  CAS  Google Scholar 

  46. Chen L, Willis SN, Wei A et al (2005) Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17:393–403

    Article  PubMed  CAS  Google Scholar 

  47. Klionsky DJ, Abeliovich H, Agostinis P et al (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4:151–175

    PubMed  CAS  Google Scholar 

  48. Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G (2006) Mechanisms of cytochrome c release from mitochondria. Cell Death Differ 13:1423–1433

    Article  PubMed  CAS  Google Scholar 

  49. Moubarak RS, Yuste VJ, Artus C et al (2007) Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol Cell Biol 27:4844–4862

    Article  PubMed  CAS  Google Scholar 

  50. Kepp O, Rajalingam K, Kimmig S, Rudel T (2007) Bak and Bax are non-redundant during infection- and DNA damage-induced apoptosis. EMBO J 26:825–834

    Article  PubMed  CAS  Google Scholar 

  51. Frenzel A, Labi V, Chmelewskij W et al (2010) Suppression of B-cell lymphomagenesis by the BH3-only proteins Bmf and Bad. Blood 115:995–1005

    Article  PubMed  CAS  Google Scholar 

  52. Pinon JD, Labi V, Egle A, Villunger A (2008) Bim and Bmf in tissue homeostasis and malignant disease. Oncogene 27(Suppl 1):S41–S52

    Article  PubMed  CAS  Google Scholar 

  53. Feoktistova M, Geserick P, Kellert B et al (2011) cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol Cell 43:449–463

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank J Silke, M Kelliher, A Strasser, J Adams, R Flavell and Y Jelamos for providing MEF, mice and/or reagents. We acknowledge skilful technical assistance by Katharina Heinz and Eva Albertini. This study was supported by grants from the Austrian Science Fund (FWF) # Y212-B13 START (AV), the Tiroler Krebshilfe (CM, GK) and the Tyrolean Science Fund (CM). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest:

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Krumschnabel.

Additional information

Denise Tischner and Claudia Manzl contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 884 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tischner, D., Manzl, C., Soratroi, C. et al. Necrosis-like death can engage multiple pro-apoptotic Bcl-2 protein family members. Apoptosis 17, 1197–1209 (2012). https://doi.org/10.1007/s10495-012-0756-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-012-0756-8

Keywords

Navigation