Skip to main content
Log in

PDCD5 interacts with p53 and functions as a positive regulator in the p53 pathway

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The tumor suppressor p53 is at the hub of cellular signaling networks that are activated by stress signals including DNA damage. In the present study, we showed that programmed cell death 5 (PDCD5) bound to p53 by glutathione S-transferase (GST)-pulldown, co-immunoprecipitation and co-localization assays. PDCD5 enhanced the stability of p53 by antagonizing Mdm2-induced p53 ubiquitination, nuclear export and proteasomal degradation. We also found that PDCD5 could dissociate the interaction between p53 and Mdm2 and interact with Mdm2 directly to promote its degradation. In cells with or without induction of DNA damage, knockdown of PDCD5 by RNA interference decreased the p53 phosphorylation at Ser9, 20 and 392 residues, as well as the expression of p21 protein. Additionally, chromatin immunoprecipitation assays showed an up-regulated association of PDCD5 at the p53BS2 site of the p21 promoter during DNA damage. Cell cycle analysis also indicated that PDCD5 was required in G1 phase cell arrest during DNA damage. In summary, PDCD5 may contribute to maintain a basal pool of p53 proteins in unstressed conditions, but upon DNA damage it functions as a co-activator of p53 to regulate transcription and cell cycle arrest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253:49–53

    Article  PubMed  CAS  Google Scholar 

  2. Laptenko O, Prives C (2006) Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ 13:951–961

    Article  PubMed  CAS  Google Scholar 

  3. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  4. Mihara M, Erster S, Zaika A et al (2003) p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11:577–590

    Article  PubMed  CAS  Google Scholar 

  5. Kubbutat MH, Jones SN, Vousden KH (1997) Regulation of p53 stability by Mdm2. Nature 387:299–303

    Article  PubMed  CAS  Google Scholar 

  6. Leng RP, Lin Y, Ma W et al (2003) Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 112:779–791

    Article  PubMed  CAS  Google Scholar 

  7. Dornan D, Wertz I, Shimizu H et al (2004) The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 429:86–92

    Article  PubMed  CAS  Google Scholar 

  8. Chen D, Kon N, Li M et al (2005) ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell 121:1071–1083

    Article  PubMed  CAS  Google Scholar 

  9. Brady CA, Jiang D, Mello SS et al (2011) Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell 145:571–583

    Article  PubMed  CAS  Google Scholar 

  10. Bode AM, Dong Z (2004) Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 4:793–805

    Article  PubMed  CAS  Google Scholar 

  11. Higashimoto Y, Saito S, Tong XH et al (2000) Human p53 is phosphorylated on serines 6 and 9 in response to DNA damage-inducing agents. J Biol Chem 275:23199–23203

    Article  PubMed  CAS  Google Scholar 

  12. Sakaguchi K, Saito S, Higashimoto Y et al (2000) Damage-mediated phosphorylation of human p53 threonine 18 through a cascade mediated by a casein 1-like kinase. Effect on Mdm2 binding. J Biol Chem 275:9278–9283

    Article  PubMed  CAS  Google Scholar 

  13. Abraham RT (2001) Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15:2177–2196

    Article  PubMed  CAS  Google Scholar 

  14. Banin S, Moyal L, Shieh S et al (1998) Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281:1674–1677

    Article  PubMed  CAS  Google Scholar 

  15. Tibbetts RS, Brumbaugh KM, Williams JM et al (1999) A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev 13:152–157

    Article  PubMed  CAS  Google Scholar 

  16. Hirao A, Kong YY, Matsuoka S et al (2000) DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287:1824–1827

    Article  PubMed  CAS  Google Scholar 

  17. Shieh SY, Ikeda M, Taya Y, Prives C (1997) DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91:325–334

    Article  PubMed  CAS  Google Scholar 

  18. Lu H, Fisher RP, Bailey P, Levine AJ (1997) The CDK7-cycH-p36 complex of transcription factor IIH phosphorylates p53, enhancing its sequence-specific DNA binding activity in vitro. Mol Cell Biol 17:5923–5934

    PubMed  CAS  Google Scholar 

  19. Liu H, Wang Y, Zhang Y et al (1999) TFAR19, a novel apoptosis-related gene cloned from human leukemia cell line TF-1, could enhance apoptosis of some tumor cells induced by growth factor withdrawal. Biochem Biophys Res Commun 254:203–210

    Article  PubMed  CAS  Google Scholar 

  20. Wang Y, Li X, Wang L et al (2004) An alternative form of paraptosis-like cell death, triggered by TAJ/TROY and enhanced by PDCD5 overexpression. J Cell Sci 117:1525–1532

    Article  PubMed  CAS  Google Scholar 

  21. Chen Y, Sun R, Han W et al (2001) Nuclear translocation of PDCD5 (TFAR19): an early signal for apoptosis? FEBS Lett 509:191–196

    Article  PubMed  CAS  Google Scholar 

  22. Spinola M, Meyer P, Kammerer S et al (2006) Association of the PDCD5 locus with lung cancer risk and prognosis in smokers. J Clin Oncol 24:1672–1678

    Article  PubMed  CAS  Google Scholar 

  23. Yang Y, Zhao M, Li W et al (2006) Expression of programmed cell death 5 gene involves in regulation of apoptosis in gastric tumor cells. Apoptosis 11:993–1001

    Article  PubMed  CAS  Google Scholar 

  24. Ruan G, Qin Y, Chen S et al (2006) Abnormal expression of the programmed cell death 5 gene in acute and chronic myeloid leukemia. Leuk Res 30:1159–1165

    Article  PubMed  CAS  Google Scholar 

  25. Du Y, Xiong L, Lou Y, Tan W, Zheng S (2009) Reduced expression of programmed cell death 5 protein in tissue of human prostate cancer. Chin Med Sci J 24:241–245

    Article  PubMed  Google Scholar 

  26. Zhang X, Wang X, Song X et al (2011) Clinical and prognostic significance of lost or decreased PDCD5 expression in human epithelial ovarian carcinomas. Oncol Rep 25:353–358

    PubMed  CAS  Google Scholar 

  27. Li H, Wang Q, Gao F et al (2008) Reduced expression of PDCD5 is associated with high-grade astrocytic gliomas. Oncol Rep 20:573–579

    PubMed  CAS  Google Scholar 

  28. Chen C, Zhou H, Xu L et al (2010) Prognostic significance of downregulated expression of programmed cell death 5 in chondrosarcoma. J Surg Oncol 102:838–843

    Article  PubMed  CAS  Google Scholar 

  29. Ruan G, Zhao H, Chang Y et al (2008) Adenovirus-mediated PDCD5 gene transfer sensitizes K562 cells to apoptosis induced by idarubicin in vitro and in vivo. Apoptosis 13:641–648

    Article  PubMed  CAS  Google Scholar 

  30. Chen C, Zhou H, Xu L et al (2010) Recombinant human PDCD5 sensitizes chondrosarcomas to cisplatin chemotherapy in vitro and in vivo. Apoptosis 15:805–813

    Article  PubMed  CAS  Google Scholar 

  31. Shi L, Song Q, Zhang Y et al (2010) Potent antitumor activities of recombinant human PDCD5 protein in combination with chemotherapy drugs in K562 cells. Biochem Biophys Res Commun 396:224–230

    Article  PubMed  CAS  Google Scholar 

  32. Wang Y, Song Q, Zhang Y et al (2009) Recombinant human PDCD5 protein enhances chemosensitivities of hematologic malignancies. Chin Sci Bull 54:3981–3989

    Article  CAS  Google Scholar 

  33. Ma X, Ruan G, Wang Y et al (2005) Two single-nucleotide polymorphisms with linkage disequilibrium in the human programmed cell death 5 gene 5′ regulatory region affect promoter activity and the susceptibility of chronic myelogenous leukemia in Chinese population. Clin Cancer Res 11:8592–8599

    Article  PubMed  CAS  Google Scholar 

  34. Xu L, Chen Y, Song Q et al (2009) PDCD5 interacts with Tip60 and functions as a cooperator in acetyltransferase activity and DNA damage-induced apoptosis. Neoplasia 11:345–354

    PubMed  CAS  Google Scholar 

  35. Chen L, Wang Y, Ma D, Chen Y (2006) Short interfering RNA against the PDCD5 attenuates cell apoptosis and caspase-3 activity induced by Bax overexpression. Apoptosis 11:101–111

    Article  PubMed  CAS  Google Scholar 

  36. Li P, Wang D, Yao H et al (2010) Coordination of PAD4 and HDAC2 in the regulation of p53-target gene expression. Oncogene 29:3153–3162

    Article  PubMed  CAS  Google Scholar 

  37. Chen D, Zhang Z, Li M et al (2007) Ribosomal protein S7 as a novel modulator of p53-MDM2 interaction: binding to MDM2, stabilization of p53 protein, and activation of p53 function. Oncogene 26:5029–5037

    Article  PubMed  CAS  Google Scholar 

  38. Dai MS, Lu H (2004) Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. J Biol Chem 279:44475–44482

    Article  PubMed  CAS  Google Scholar 

  39. Jin A, Itahana K, O’Keefe K, Zhang Y (2004) Inhibition of HDM2 and activation of p53 by ribosomal protein L23. Mol Cell Biol 24:7669–7680

    Article  PubMed  CAS  Google Scholar 

  40. Lohrum MA, Ludwig RL, Kubbutat MH, Hanlon M, Vousden KH (2003) Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell 3:577–587

    Article  PubMed  CAS  Google Scholar 

  41. Yao H, Feng Y, Zhou T, Wang J, Wang Z (2012) NMR studies of the interaction between human programmed cell death 5 and human p53. Biochemistry 51:2684–2693

    Article  PubMed  CAS  Google Scholar 

  42. Schon O, Friedler A, Freund S, Fersht AR (2004) Binding of p53-derived ligands to MDM2 induces a variety of long range conformational changes. J Mol Biol 336:197–202

    Article  PubMed  CAS  Google Scholar 

  43. Meek DW (1994) Post-translational modification of p53. Semin Cancer Biol 5:203–210

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the National Key Project for Basic Research of China (973, 2011CB910103) and the National Natural Science Foundation of China (30871263).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingyu Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, L., Hu, J., Zhao, Y. et al. PDCD5 interacts with p53 and functions as a positive regulator in the p53 pathway. Apoptosis 17, 1235–1245 (2012). https://doi.org/10.1007/s10495-012-0754-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-012-0754-x

Keywords

Navigation