Skip to main content

Advertisement

Log in

sMEK1 enhances gemcitabine anti-cancer activity through inhibition of phosphorylation of Akt/mTOR

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Recently, we reported that sMEK1 is down-regulated in cancer cells and tissues, and that it enhances the pro-proliferative effect as a novel pro-apoptotic protein. However, the biological mechanism of the sMEK1 tumor suppressor in the cellular signal pathway has not been well understood. In our current work, we examined whether sMEK1 could promote the cytotoxic activity of gemcitabine in the human ovarian carcinoma system. Initially, we attempted to use a treatment of gemcitabine traditional chemotherapeutic agent and over-expression of sMEK1 in OVCAR-3 cancer cells. The combined treatment of sMEK1 and gemcitabine was more effective at inhibiting cell proliferation than either chemotherapeutic agent treatment alone. In addition, sMEK1 actively contributes to cell migration through its ability to promote gemcitabine-inhibited cell migration in tumorigenesis. Cell cycle-related proteins are highly associated with the down-regulation of cyclin D1 and CDK4, and the promotion of p16 and p27 as a cyclin-dependent kinase inhibitor. At the same time, sMEK1 arrests cell cycle progression in the G1–G0 phase, and activates p53 and p21 expression, whereas Bcl-2 and Bcl-xL protein expression is reduced. Additionally, sMEK1 and gemcitabine suppresses the phosphorylation of signaling modulators downstream of PI3K, such as PDK1 and Akt. The p53 and p21 promoter luciferase activities were promoted by either sMEK1 or gemcitabine, and sMEK1 and gemcitabine combined additively activated the promoter further. Furthermore, as expected, sMEK1 plus gemcitabine markedly reduced the phosphorylation of p70S6K and the phosphorylation of 4E-BP1, which is one of the best characterized targets of the mTOR complex cascade. Taken together, these results provide evidence that sMEK1 can effectively regulate the pro-apoptotic activity of gemcitabine through the up-regulation of p53 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

sMEK1:

Suppressor of MEK null 1

PP4R3:

Protein phosphatase 4 regulatory subunit 3

Gemcitabine:

2′deoxy-2′2′-difluorocytidine monohydrochloride

MDR:

Multidrug resistance

FITC:

Fluorescein isothiocyanate

PI:

Propidium iodide

MTT:

3-(4,5-dimethylthiazol-2-yl)-2.5-diphenyl-2H-tetrazolium bromide

References

  1. Gavin AC, Bosche M, Krause R et al (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147

    Article  PubMed  CAS  Google Scholar 

  2. Gingras AC, Caballero M, Zarske M et al (2005) A novel, evolutionarily conserved protein phosphatase complex involved in cisplatin sensitivity. Mol Cell Proteomics 4:1725–1740

    Article  PubMed  CAS  Google Scholar 

  3. Keogh MC, Kim JA, Downey M et al (2006) A phosphatase complex that dephosphorylates gammaH2AX regulates DNA damage checkpoint recovery. Nature 439:497–501

    Article  PubMed  CAS  Google Scholar 

  4. Huang X, Cheng A, Honkanen RE (1997) Genomic organization of the human PP4 gene encoding a serine/threonine protein phosphatase (PP4) suggests a common ancestry with PP2A. Genomics 44:336–343

    Article  PubMed  CAS  Google Scholar 

  5. Andreeva AV, Kutuzov MA (2001) PPP family of protein Ser/Thr phosphatases: two distinct branches? Mol Biol Evol 18:448–452

    Article  PubMed  CAS  Google Scholar 

  6. Zhou G, Mihindukulasuriya KA, MacCorkle-Chosnek RA et al (2002) Protein phosphatase 4 is involved in tumor necrosis factor-alpha-induced activation of c-Jun N-terminal kinase. J Biol Chem 277:6391–6398

    Article  PubMed  CAS  Google Scholar 

  7. Cohen PT, Philp A, Vázquez-Martin C (2005) Protein phosphatase 4-from obscurity to vital functions. FEBS Lett 579:3278–3286

    Article  PubMed  CAS  Google Scholar 

  8. Zhang X, Ozawa Y, Lee H et al (2005) Histone deacetylase 3 (HDAC3) activity is regulated by interaction with protein serine/threonine phosphatase 4. Genes Dev 19:827–839

    Article  PubMed  CAS  Google Scholar 

  9. Chowdhury D, Xu X, Zhong X et al (2008) A PP4-phosphatase complex dephosphorylates gamma-H2AX generated during DNA replication. Mol Cell 31:33–46

    Article  PubMed  CAS  Google Scholar 

  10. Mourtada-Maarabouni M, Williams GT (2008) Protein phosphatase 4 regulates apoptosis, proliferation and mutation rate of human cells. Biochim Biophys Acta 1783:1490–1502

    Article  PubMed  CAS  Google Scholar 

  11. Nakada S, Chen GI, Gingras AC et al (2008) PP4 is a gamma H2AX phosphatase required for recovery from the DNA damage checkpoint. EMBO Rep 9:1019–1026

    Article  PubMed  CAS  Google Scholar 

  12. Bertram PG, Choi JH, Carvalho J et al (2000) Tripartite regulation of Gln3p by TOR, Ure2p, and phosphatases. J Biol Chem 275:35727–35733

    Article  PubMed  CAS  Google Scholar 

  13. Mihindukulasuriya KA, Zhou G, Qin J et al (2004) Protein phosphatase 4 interacts with and down-regulates insulin receptor substrate 4 following tumor necrosis factor-alpha stimulation. J Biol Chem 279:46588–46594

    Article  PubMed  CAS  Google Scholar 

  14. Yoon YS, Lee MW, Ryu D et al (2010) Suppressor of MEK null (SMEK)/protein phosphatase 4 catalytic subunit (PP4C) is a key regulator of hepatic gluconeogenesis. Proc Natl Acad Sci U S A 107:17704–17709

    Article  PubMed  CAS  Google Scholar 

  15. Dong SM, Byun HJ, Kim BR et al (2012) Tumor suppressor BLU enhances pro-apoptotic activity of sMEK1 through physical interaction. Cell Signal 24:1208–1214

    Article  PubMed  CAS  Google Scholar 

  16. Plunkett W, Huang P, Searcy CE et al (1996) Gemcitabine: preclinical pharmacology and mechanisms of action. Semin Oncol 23:3–15

    PubMed  CAS  Google Scholar 

  17. Peters GJ, Van Moorsel CJ, Lakerveld B et al (2006) Effects of gemcitabine on cis-platinum-DNA adduct formation and repair in a panel of gemcitabine and cisplatin-sensitive or -resistant human ovarian cancer cell lines. Int J Oncol 28:237–244

    PubMed  CAS  Google Scholar 

  18. Toschi L, Finocchiaro G, Bartolini S et al (2005) Role of gemcitabine in cancer therapy. Future Oncol 1:7–17

    Article  PubMed  CAS  Google Scholar 

  19. Bhoola S, Hoskins WJ (2006) Diagnosis and management of epithelial ovarian cancer. Obstet Gynecol 107:1399–1410

    Article  PubMed  Google Scholar 

  20. Trock BJ, Leonessa F, Clarke R (1997) Multidrug resistance in breast cancer: a meta-analysis of MDR1/gp170 expression and its possible functional significance. J Natl Cancer Inst 89:917–931

    Article  PubMed  CAS  Google Scholar 

  21. Leith C (1998) Multidrug resistance in leukemia. Curr Opin Hematol 5:287–291

    Article  PubMed  CAS  Google Scholar 

  22. Szakacs G, Jakab K, Antal F et al (1998) Diagnostics of multidrug resistance in cancer. Pathol Oncol Res 4:251–257

    Article  PubMed  CAS  Google Scholar 

  23. Van Nimwegen MJ, Van Dewater B (2007) Focal adhesion kinase: a potential target in cancer therapy. Biochem Pharmacol 73:597–609

    Article  Google Scholar 

  24. Morgan L, Nicholson RI, Hiscox S (2008) SRC as a therapeutic target in breast cancer. Endocr Metab Immune Disord Drug Targets 8:273–278

    Article  PubMed  CAS  Google Scholar 

  25. Schlessinger J (2000) New roles for Src kinases in control of cell survival and angiogenesis. Cell 100:293–296

    Article  PubMed  CAS  Google Scholar 

  26. Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326

    Article  PubMed  CAS  Google Scholar 

  27. Antonsson B, Martinou JC (2000) The Bcl-2 protein family. Exp Cell Res 256:50–57

    Article  PubMed  CAS  Google Scholar 

  28. Yin XM, Oltvai ZN, Korsmeyer SJ (1994) BH1 and BH2 domain of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature 369:321–323

    Article  PubMed  CAS  Google Scholar 

  29. Reed JC (1997) Bcl-2 family proteins: regulators of apoptosis and chemoresistance in hematologic malignancies. Semin Hematol 34:9–19

    PubMed  CAS  Google Scholar 

  30. Johnstone RW, Ruefli AA, Lowe SW (2002) Apoptosis: a link between cancer genetics and chemotherapy. Cell 108:153–164

    Article  PubMed  CAS  Google Scholar 

  31. Malaguarnera L (2004) Implications of apoptosis regulators in tumorigenesis. Cancer Metastasis Rev 23:367–387

    Article  PubMed  CAS  Google Scholar 

  32. Lorusso D, Di Stefano A, Fanfani F et al (2006) Role of gemcitabine in ovarian cancer treatment. Ann Oncol 17:v188–v194

    Article  PubMed  Google Scholar 

  33. Bergman AM, Ruiz van Haperen VW, Veerman G et al (1996) Synergistic interaction between Cisplatin and Gemcitabine in vitro. Clin Cancer Res 2:521–530

    PubMed  CAS  Google Scholar 

  34. Wang S, Zhang H, Cheng L et al (2010) Analysis of the cytotoxic activity of carboplatin and gemcitabine combination. Anticancer Res 30:4573–4578

    PubMed  CAS  Google Scholar 

  35. Yu WD, Ma Y, Flynn G et al (2010) Calcitriol enhances gemcitabine anti-tumor activity in vitro and in vivo by promoting apoptosis in a human pancreatic carcinoma model system. Cell Cycle 9:3022–3029

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Cancer Center, Korea (NCC-1210470-1). We thank Dr. S.A. Martinis (Department of Biochemistry, University of Illinois at Urbana-Champaign, IL, USA) for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Bae Rho.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 527 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byun, HJ., Kim, BR., Yoo, R. et al. sMEK1 enhances gemcitabine anti-cancer activity through inhibition of phosphorylation of Akt/mTOR. Apoptosis 17, 1095–1103 (2012). https://doi.org/10.1007/s10495-012-0751-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-012-0751-0

Keywords

Navigation