Skip to main content
Log in

siRNA as a tool to delineate pathway channelization in H2O2 induced apoptosis of primary Leydig cells in vitro

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Using siRNA as a tool, the channelization of pathway in H2O2 induced apoptosis of primary Leydig cells was investigated in vitro. Exposure (4 h) to H2O2 (250 μM) induced maximum apoptosis but affected Leydig cell viability significantly. Therefore, expression of apoptotic marker genes, caspase-8, -9, -3 and polyadenosine ribose polymerase was subsequently investigated using the same concentration post 1 h exposure. Incubation with siRNA (20 nM) either for caspase-8 or -9, inhibited their individual expressions by 55–60 % and activity, 50–55 %. The inhibition efficiency using siRNA was comparable with post- or pre-H2O2 treatment of cells. Like siRNA, Eugenia jambolana (100 μg/ml) plant extract too, effectively countered over-expression of all apoptotic marker proteins. Silencing expressions of caspase 8 but not 9 through siRNA leads to a profound inhibition of caspase 3 implying that H2O2 induced Leydig cell apoptosis is preferably channeled through extrinsic and later extending to other pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Svchnikov K, Izzo G, Landreh L, Weisser J, Soder O (2010) Endocrine disruptors and Leydig cell function. J Biomed Biotech. doi:10.1155/2010/684504

    Google Scholar 

  2. Skakkebaek NE, Rajpert-De Meyts E, Main KM (2001) Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod 16:972–978

    Article  PubMed  CAS  Google Scholar 

  3. Virtanena HE, Rajpert-De Meyts E, Main KM, Skakkebaek NE, Topparia J (2005) Testicular dysgenesis syndrome and the development and occurrence of male reproductive disorders. Toxicol Appl Pharmacol 207:S501–S505

    Article  Google Scholar 

  4. Hedger MP, de Kretser DM (2000) Leydig cell function and regulation. Results Probl Cell Differ 28:69–110

    PubMed  CAS  Google Scholar 

  5. Habert R, Lejeune H, Saez JM (2001) Origin, differentiation and regulation of fetal and adult Leydig cells. Mol Cell Endocrinol 179:47–74

    Article  PubMed  CAS  Google Scholar 

  6. Qin J, Tsai MJ, Tsai SY (2008) Essential roles of COUP-TFII in Leydig cell differentiation and male fertility. PLoS One 3:e3285. doi:10.1371/journal.pone.0003285

    Article  PubMed  Google Scholar 

  7. Barbouti A, Doulias PT, Nousis L, Tenopoulou M, Galaris D (2002) DNA damage and apoptosis in hydrogen peroxide-exposed jurkat cells: bolus versus continuous generation of H2O2. Free Radic Biol Med 33:691–702

    Article  PubMed  CAS  Google Scholar 

  8. Zhai L, Zhang P, Sun RY, Liu XY, Liu WG, Guo XL (2011) Cytoprotective effects of CSTMP, a novel stilbene derivative, against H2O2-induced oxidative stress in human endothelial cells. Pharmacol Rep 63:1469–1480

    PubMed  CAS  Google Scholar 

  9. Liu RH, Yang MH, Xiang H, Bao LM, Yang HA, Yue LW, Jiang X, Ang N, Wu LY, Huang Y (2012) Depletion of OLFM4 gene inhibits cell growth and increases sensitization to hydrogen peroxide and tumor necrosis factor-alpha induced-apoptosis in gastric cancer cells. J Biomed Sci 19:38

    Article  PubMed  CAS  Google Scholar 

  10. Moon DO, Kim BY, Jang JH, Kim MO, Jayasooriya RG, Kang CH, Choi YH, Moon SK, Kim WJ, Ahn JS, Kim GY (2012) K-RAS transformation in prostate epithelial cell overcomes -induced apoptosis via upregulation of gamma-glutamyltransferase-2. Toxicol In Vitro 26:429–434

    Article  PubMed  CAS  Google Scholar 

  11. Gautam DK, Misro MM, Chaki SP, Sehgal N (2006) H2O2 at physiological concentrations modulates Leydig cell function inducing oxidative stress and apoptosis. Apoptosis 11:39–46

    Article  PubMed  CAS  Google Scholar 

  12. Aggarwal A, Misro MM, Maheshwari A, Sehgal N, Nandan D (2009) Adverse effects associated with persistent stimulation of Leydig cells with hCG in vitro. Mol Reprod Dev 76:1076–1083

    Article  PubMed  CAS  Google Scholar 

  13. Aggarwal A, Misro MM, Maheshwari A, Sehgal N, Nandan D (2010) N-Acetylcysteine counteracts oxidative stress and prevents hCG induced apoptosis in rat Leydig cells through caspase-8 and JNK down regulation. Mol Reprod Dev 77:900–909

    Article  PubMed  CAS  Google Scholar 

  14. Dean NM (2001) Functional genomics and target validation approaches using antisense oligonucleotide technology. Curr Opin Biotechnol 12:622–625

    Article  PubMed  CAS  Google Scholar 

  15. Bennett CF, Chiang M-Y, Chan H, Shoemaker JEE, Mirabelli CK (1992) Cationic lipids enhance cellular uptake and activity of phosphorothioate antisense oligonucleotides. Mol Pharmacol 41:1023–1033

    PubMed  CAS  Google Scholar 

  16. Anand H, Misro MM, Sharma SB, Prakash S (2012) Cytoprotective effects of fruit pulp of Eugenia jambolana on H2O2 induced oxidative stress and apoptosis in rat Leydig cells in vitro. Andrologia. doi:10.1111/j.1439-0272.2012.01323.x. Epub ahead of print

  17. Khan S, Teerds K, Dorrington J (1992) Growth factor requirements for DNA synthesis by Leydig cells from the immature rat. Biol Reprod 46:335–341

    Article  PubMed  CAS  Google Scholar 

  18. Maheshwari A, Misro MM, Aggarwal A, Sharma RK, Nandan D (2011) N-Acetyl-l-Cysteine counteracts oxidative stress and prevents H2O2 induced germ cell apoptosis through down-regulation of caspase-9 and JNK/c-Jun. Mol Reprod Dev 78:69–79

    Article  PubMed  CAS  Google Scholar 

  19. Benton L, Shan LX, Hardy MP (1995) Differentiation of adult Leydig cells. J Steroid Biochem Mol Biol 53:61–68

    Article  PubMed  CAS  Google Scholar 

  20. Kumar TR (2004) Divide and differentiate: ghrelin instructs the Leydig cells. Endocrinol 145:4822–4844

    Article  CAS  Google Scholar 

  21. Hutson JC (2006) Physiologic interactions between macrophages and Leydig cells. Exp Biol Med (Maywood) 231:1–7

    CAS  Google Scholar 

  22. Hutson JC (1992) Development of cytoplasmic digitations between Leydig cells and testicular macrophages of the rat. Cell Tissue Res 267:385–389

    Article  PubMed  CAS  Google Scholar 

  23. Maheshwari A, Misro MM, Aggarwal A, Sharma RK (2012) N-Acetylcysteine modulates multiple signaling pathways to rescue male germ cells from apoptosis induced by chronic hCG administration to rats. Apoptosis 17:551–565

    Article  PubMed  CAS  Google Scholar 

  24. Tamura H, Ohtsuru A, Kamohara Y, Fujioka H, Yanaga K, Kanematsu T, Yamashita S (2003) Bax cleavage implicates caspase-dependent H2O2-induced apoptosis of hepatocytes. Int J Mol Med 11:369–374

    PubMed  CAS  Google Scholar 

  25. Wu Y, Wang D, Wang X, Wang Y, Ren F, Chang D, Chang Z, Jia B (2011) Caspase 3 is activated through caspase 8 instead of caspase 9 during H2O2-induced apoptosis in HeLa cells. Cell Physiol Biochem 27:539–546

    Article  PubMed  CAS  Google Scholar 

  26. Maheshwari A, Misro MM, Aggarwal A, Sharma RK, Nandan D (2009) Pathways involved in testicular germ cell apoptosis induced by H2O2 in vitro. FEBS J 276:870–881

    Article  PubMed  CAS  Google Scholar 

  27. Kole R, Sazani P (2001) Antisense effects in the cell nucleus: modification of splicing. Curr Opin Mol Ther 3:229–234

    PubMed  CAS  Google Scholar 

  28. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  29. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  PubMed  CAS  Google Scholar 

  30. Veldhoen S, Laufer SD, Restle T (2008) Recent developments in peptide-based nucleic acid delivery. Int J Mol Sci 9:1276–1320

    Article  PubMed  CAS  Google Scholar 

  31. Zetsepin TS, Turner JJ, Oretskaya TS, Gait MJ (2005) Conjugates of oligonucleotides and analogues with cell penetrating peptides as gene silencing agents. Curr Pharm Des 11:3639–3654

    Article  Google Scholar 

  32. Ding SW (2005) RNAi: mechanisms, biology and applications. FEBS Lett 579:5821–6007

    Article  CAS  Google Scholar 

  33. Rana TM (2007) Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 8:23–36

    Article  PubMed  CAS  Google Scholar 

  34. Simeoni F, Morris MC, Heitz F, Divita G (2003) Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells. Nucleic Acids Res 31:2717–2724

    Article  PubMed  CAS  Google Scholar 

  35. Chiu YL, Ali A, Chu CY, Cao H, Rana TM (2004) Visualizing a correlation between siRNA localization, cellular uptake and RNAi in living cells. Chem Biol 11:1165–1175

    Article  PubMed  CAS  Google Scholar 

  36. Kaufmann SH, Hengartner MO (2001) Programmed cell death: alive and well in the new millennium. Trends Cell Biol 11:526–534

    Article  PubMed  CAS  Google Scholar 

  37. Ghobrial IM, Witzig TE, Adjei AA (2005) Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin 55:178–194

    Article  PubMed  Google Scholar 

  38. Zapata JM, Pawlowski K, Haas E et al (2001) A diverse family of proteins containing tumor necrosis factor receptor-associated factor domains. J Biol Chem 276:24242–24252

    Article  PubMed  CAS  Google Scholar 

  39. Hockenbery D, Nunez G, Milliman C et al (1990) Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348:334–336

    Article  PubMed  CAS  Google Scholar 

  40. Taylor MF, de Boer-Brouwer M, Woolveridge I, Teerds KJ, Morris ID (1999) Leydig cell apoptosis after the administration of ethane dimethane sulfonate to the adult male rat is Fas-mediated process. Endocrinology 140:3797–3804

    Article  PubMed  CAS  Google Scholar 

  41. Fruehauf JP Jr, Meyskens FL (2007) Reactive oxygen species: a breath of life or death. Clin Cancer Res 13:789–794

    Article  PubMed  CAS  Google Scholar 

  42. Sen CK (2000) Cellular thiols and redox-regulated signal transduction. Curr Top Cell Regul 36:1–30

    Article  PubMed  CAS  Google Scholar 

  43. Biswas S, Chida AS, Rahman I (2006) Redox modification of protein-thiols: emerging roles in cell signaling. Biochem Pharmacol 71:551–564

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The generous gift of EJE extract from Dr. Suman Bala Sharma, Professor, University College of Medical Sciences, Delhi, is greatly acknowledged. The study was funded by NIHFW.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Misro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 66 kb)

Supplementary material 2 (DOC 51 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anand, H., Misro, M.M., Sharma, S.B. et al. siRNA as a tool to delineate pathway channelization in H2O2 induced apoptosis of primary Leydig cells in vitro. Apoptosis 17, 1131–1143 (2012). https://doi.org/10.1007/s10495-012-0749-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-012-0749-7

Keywords

Navigation