Skip to main content

Vinpocetine inhibits breast cancer cells growth in vitro and in vivo


Vinpocetine is a clinically used drug for cerebrovascular disorders as well as age-related memory impairment. Of note, vinpocetine has been recently identified as a novel anti-inflammatory agent; however, its effects on cancer cells remain to be investigated. In the present study, we found that vinpocetine potently inhibited proliferation of multiple types of human breast cancer cells by arresting cell cycle at G0/G1 phase. It was also revealed that vinpocetine induced cell apoptosis via mitochondria-dependent pathway. Moreover, vinpocetine impaired the migration of the strongly metastatic cell MDA-MB-231. In xenograft model of human breast cancer in nude mice, both systemic and local administration of vinpocetine significantly suppressed the tumor growth without observed toxicity. Interestingly, vinpocetine markedly attenuated the activation of Akt and signal transducer and activator of transcription factor 3 (STAT3), but had no effects on MAP kinases pathways. Collectively, the data suggest that vinpocetine possesses significant yet previously unknown antitumor properties that may be utilized for the treatment of breast cancer.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Liu L, Zhang J, Wu AH, Pike MC, Deapen D (2012) Invasive breast cancer incidence trends by detailed race/ethnicity and age. Int J Cancer 130:395–404

    PubMed  CAS  Article  Google Scholar 

  2. 2.

    DeSantis C, Siegel R, Bandi P, Jemal A (2011) Breast cancer statistics, 2011. CA Cancer J Clin 61:409–418

    PubMed  Article  Google Scholar 

  3. 3.

    Smigal C, Jemal A, Ward E et al (2006) Trends in breast cancer by race and ethnicity: update 2006. CA Cancer J Clin 56:168–183

    PubMed  Article  Google Scholar 

  4. 4.

    Rochefort H (1987) Nonsteroidal antiestrogens are estrogen-receptor-targeted growth inhibitors that can act in the absence of estrogens. Horm Res 28:196–201

    PubMed  CAS  Article  Google Scholar 

  5. 5.

    Osborne CK (1998) Steroid hormone receptors in breast cancer management. Breast Cancer Res Treat 51:227–238

    PubMed  CAS  Article  Google Scholar 

  6. 6.

    Stacey SN, Sulem P, Jonasdottir A et al (2011) A germline variant in the TP53 polyadenylation signal confers cancer susceptibility. Nat Genet 43:1098–1103

    PubMed  CAS  Article  Google Scholar 

  7. 7.

    Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR (2008) Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell 132:363–374

    PubMed  CAS  Article  Google Scholar 

  8. 8.

    Su F, Viros A, Milagre C et al (2012) RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N Engl J Med 366:207–215

    PubMed  CAS  Article  Google Scholar 

  9. 9.

    Garcia R, Bowman TL, Niu G et al (2001) Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. Oncogene 20:2499–2513

    PubMed  CAS  Article  Google Scholar 

  10. 10.

    Szilagyi G, Nagy Z, Balkay L et al (2005) Effects of vinpocetine on the redistribution of cerebral blood flow and glucose metabolism in chronic ischemic stroke patients: a PET study. J Neurol Sci 229–230:275–284

    PubMed  Article  Google Scholar 

  11. 11.

    Dezsi L, Kis-Varga I, Nagy J, Komlodi Z, Karpati E (2002) Neuroprotective effects of vinpocetine in vivo and in vitro. Apovincaminic acid derivatives as potential therapeutic tools in ischemic stroke. Acta Pharm Hung 72:84–91

    PubMed  CAS  Google Scholar 

  12. 12.

    Bagoly E, Feher G, Szapary L (2007) The role of vinpocetine in the treatment of cerebrovascular diseases based in human studies. Orv Hetil 148:1353–1358

    PubMed  Article  Google Scholar 

  13. 13.

    Hagiwara M, Endo T, Hidaka H (1984) Effects of vinpocetine on cyclic nucleotide metabolism in vascular smooth muscle. Biochem Pharmacol 33:453–457

    PubMed  CAS  Article  Google Scholar 

  14. 14.

    Truss MC, Uckert S, Stief CG, Forssmann WG, Jonas U (1996) Cyclic nucleotide phosphodiesterase (PDE) isoenzymes in the human detrusor smooth muscle. II. Effect of various PDE inhibitors on smooth muscle tone and cyclic nucleotide levels in vitro. Urol Res 24:129–134

    PubMed  CAS  Article  Google Scholar 

  15. 15.

    Sitges M, Galvan E, Nekrassov V (2005) Vinpocetine blockade of sodium channels inhibits the rise in sodium and calcium induced by 4-aminopyridine in synaptosomes. Neurochem Int 46:533–540

    PubMed  CAS  Article  Google Scholar 

  16. 16.

    Bonoczk P, Gulyas B, Adam-Vizi V et al (2000) Role of sodium channel inhibition in neuroprotection: effect of vinpocetine. Brain Res Bull 53:245–254

    PubMed  CAS  Article  Google Scholar 

  17. 17.

    Jeon KI, Xu X, Aizawa T et al (2010) Vinpocetine inhibits NF-kappaB-dependent inflammation via an IKK-dependent but PDE-independent mechanism. Proc Natl Acad Sci USA 107:9795–9800

    PubMed  CAS  Article  Google Scholar 

  18. 18.

    Nagel DJ, Aizawa T, Jeon KI et al (2006) Role of nuclear Ca2+/calmodulin-stimulated phosphodiesterase 1A in vascular smooth muscle cell growth and survival. Circ Res 98:777–784

    PubMed  CAS  Article  Google Scholar 

  19. 19.

    Tang YB, Liu YJ, Zhou JG, Wang GL, Qiu QY, Guan YY (2008) Silence of ClC-3 chloride channel inhibits cell proliferation and the cell cycle via G/S phase arrest in rat basilar arterial smooth muscle cells. Cell Prolif 41:775–785

    PubMed  CAS  Article  Google Scholar 

  20. 20.

    Li SY, Wang XG, Ma MM et al (2012) Ginsenoside-Rd potentiates apoptosis induced by hydrogen peroxide in basilar artery smooth muscle cells through the mitochondrial pathway. Apoptosis 17:113–120

    PubMed  CAS  Article  Google Scholar 

  21. 21.

    Shi XL, Wang GL, Zhang Z et al (2007) Alteration of volume-regulated chloride movement in rat cerebrovascular smooth muscle cells during hypertension. Hypertension 49:1371–1377

    PubMed  CAS  Article  Google Scholar 

  22. 22.

    Terradillos O, Montessuit S, Huang DC, Martinou JC (2002) Direct addition of BimL to mitochondria does not lead to cytochrome c release. FEBS Lett 522:29–34

    PubMed  CAS  Article  Google Scholar 

  23. 23.

    Wang GL, Wang XR, Lin MJ, He H, Lan XJ, Guan YY (2002) Deficiency in ClC-3 chloride channels prevents rat aortic smooth muscle cell proliferation. Circ Res 91:E28–E32

    PubMed  CAS  Article  Google Scholar 

  24. 24.

    Dimco G, Knight RA, Latchman DS, Stephanou A (2010) STAT1 interacts directly with cyclin D1/Cdk4 and mediates cell cycle arrest. Cell Cycle 9:4638–4649

    PubMed  CAS  Article  Google Scholar 

  25. 25.

    Prall OW, Sarcevic B, Musgrove EA, Watts CK, Sutherland RL (1997) Estrogen-induced activation of Cdk4 and Cdk2 during G1-S phase progression is accompanied by increased cyclin D1 expression and decreased cyclin-dependent kinase inhibitor association with cyclin E-Cdk2. J Biol Chem 272:10882–10894

    PubMed  CAS  Article  Google Scholar 

  26. 26.

    Nakayama K, Ishida N, Shirane M et al (1996) Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85:707–720

    PubMed  CAS  Article  Google Scholar 

  27. 27.

    Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147:742–758

    PubMed  CAS  Article  Google Scholar 

  28. 28.

    Sen B, Saigal B, Parikh N, Gallick G, Johnson FM (2009) Sustained Src inhibition results in signal transducer and activator of transcription 3 (STAT3) activation and cancer cell survival via altered Janus-activated kinase-STAT3 binding. Cancer Res 69:1958–1965

    PubMed  CAS  Article  Google Scholar 

  29. 29.

    Badache A, Hynes NE (2001) Interleukin 6 inhibits proliferation and, in cooperation with an epidermal growth factor receptor autocrine loop, increases migration of T47D breast cancer cells. Cancer Res 61:383–391

    PubMed  CAS  Google Scholar 

  30. 30.

    Constantinescu SN, Girardot M, Pecquet C (2008) Mining for JAK-STAT mutations in cancer. Trends Biochem Sci 33:122–131

    PubMed  CAS  Article  Google Scholar 

  31. 31.

    Garcia R, Yu CL, Hudnall A et al (1997) Constitutive activation of Stat3 in fibroblasts transformed by diverse oncoproteins and in breast carcinoma cells. Cell Growth Differ 8:1267–1276

    PubMed  CAS  Google Scholar 

  32. 32.

    Song L, Turkson J, Karras JG, Jove R, Haura EB (2003) Activation of Stat3 by receptor tyrosine kinases and cytokines regulates survival in human non-small cell carcinoma cells. Oncogene 22:4150–4165

    PubMed  CAS  Article  Google Scholar 

  33. 33.

    Ferrajoli A, Faderl S, Ravandi F, Estrov Z (2006) The JAK-STAT pathway: a therapeutic target in hematological malignancies. Curr Cancer Drug Targets 6:671–679

    PubMed  CAS  Article  Google Scholar 

  34. 34.

    Buettner R, Mora LB, Jove R (2002) Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res 8:945–954

    PubMed  CAS  Google Scholar 

  35. 35.

    Turkson J (2004) STAT proteins as novel targets for cancer drug discovery. Expert Opin Ther Targets 8:409–422

    PubMed  CAS  Article  Google Scholar 

  36. 36.

    Amiri A, Noei F, Jeganathan S, Kulkarni G, Pinke DE, Lee JM (2007) eEF1A2 activates Akt and stimulates Akt-dependent actin remodeling, invasion and migration. Oncogene 26:3027–3040

    PubMed  CAS  Article  Google Scholar 

  37. 37.

    Li Z, Qi CF, Shin DM et al (2010) Eef1a2 promotes cell growth, inhibits apoptosis and activates JAK/STAT and AKT signaling in mouse plasmacytomas. PLoS One 5:e10755

    PubMed  Article  Google Scholar 

  38. 38.

    Ahn HS, Crim W, Pitts B, Sybertz EJ (1992) Calcium-calmodulin-stimulated and cyclic-GMP-specific phosphodiesterases. Tissue distribution, drug sensitivity, and regulation of cyclic GMP levels. Adv Second Messenger Phosphoprot Res 25:271–288

    CAS  Google Scholar 

  39. 39.

    Kaneko S, Takahashi H, Satoh M (1990) The use of Xenopus oocytes to evaluate drugs affecting brain Ca2+ channels: effects of bifemelane and several nootropic agents. Eur J Pharmacol 189:51–58

    PubMed  CAS  Article  Google Scholar 

  40. 40.

    Erdo SA, Molnar P, Lakics V, Bence JZ, Tomoskozi Z (1996) Vincamine and vincanol are potent blockers of voltage-gated Na+channels. Eur J Pharmacol 314:69–73

    PubMed  CAS  Article  Google Scholar 

  41. 41.

    Dunkern TR, Hatzelmann A (2007) Characterization of inhibitors of phosphodiesterase 1C on a human cellular system. FEBS J 274:4812–4824

    PubMed  CAS  Article  Google Scholar 

  42. 42.

    Savai R, Pullamsetti SS, Banat GA et al (2010) Targeting cancer with phosphodiesterase inhibitors. Expert Opin Investig Drugs 19:117–131

    PubMed  CAS  Article  Google Scholar 

  43. 43.

    Sengupta R, Sun T, Warrington NM, Rubin JB (2011) Treating brain tumors with PDE4 inhibitors. Trends Pharmacol Sci 32:337–344

    PubMed  CAS  Article  Google Scholar 

  44. 44.

    Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444

    PubMed  CAS  Article  Google Scholar 

  45. 45.

    de Visser KE, Korets LV, Coussens LM (2005) De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7:411–423

    PubMed  Article  Google Scholar 

  46. 46.

    Rebouissou S, Amessou M, Couchy G et al (2009) Frequent in-frame somatic deletions activate gp130 in inflammatory hepatocellular tumours. Nature 457:200–204

    PubMed  CAS  Article  Google Scholar 

  47. 47.

    Huber MA, Azoitei N, Baumann B et al (2004) NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest 114:569–581

    PubMed  CAS  Google Scholar 

  48. 48.

    Luo JL, Tan W, Ricono JM et al (2007) Nuclear cytokine-activated IKKalpha controls prostate cancer metastasis by repressing Maspin. Nature 446:690–694

    PubMed  CAS  Article  Google Scholar 

  49. 49.

    Mantovani A (2010) Molecular pathways linking inflammation and cancer. Curr Mol Med 10:369–373

    PubMed  CAS  Article  Google Scholar 

  50. 50.

    Medina AE (2010) Vinpocetine as a potent antiinflammatory agent. Proc Natl Acad Sci USA 107:9921–9922

    PubMed  CAS  Article  Google Scholar 

  51. 51.

    Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441:431–436

    PubMed  CAS  Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (No.30900530), Doctoral Fund of Ministry of Education (for young teachers) of China (No.20090171120055); the Fundamental Research Funds for the Central Universities (No.50000-3161020).

Author information



Corresponding author

Correspondence to Yong-Bo Tang.

Additional information

Er-Wen Huang and Sheng-Jiang Xue contributed equally to this study.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huang, EW., Xue, SJ., Zhang, Z. et al. Vinpocetine inhibits breast cancer cells growth in vitro and in vivo. Apoptosis 17, 1120–1130 (2012).

Download citation


  • Vinpocetine
  • Breast cancer
  • Proliferation
  • Apoptosis
  • STAT3