Skip to main content
Log in

Cytoskeleton keratin regulation of FasR signaling through modulation of actin/ezrin interplay at lipid rafts in hepatocytes

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

FasR stimulation by Fas ligand leads to rapid formation of FasR microaggregates, which become signaling protein oligomerization transduction structures (SPOTS), through interactions with actin and ezrin, a structural step that triggers death-inducing signaling complex formation, in association with procaspase-8 activation. In some cells, designated as type I, caspase 8 directly activates effector caspases, whereas in others, known as type II, the caspase-mediated death signaling is amplified through mitochondria. Keratins are the intermediate filament (IF) proteins of epithelial cells, expressed as pairs in a lineage/differentiation manner. Hepatocyte IFs are made solely of keratins 8/18 (K8/K18), the hallmark of all simple epithelia. We have shown recently that in comparison to type II wild-type (WT) mouse hepatocytes, the absence of K8/K18 IFs in K8-null hepatocytes leads to more efficient FasR-mediated apoptosis, in link with a type II/type I-like switch in FasR-death signaling. Here, we demonstrate that the apoptotic process occurring in type I-like K8-null hepatocytes is associated with accelerated SPOTS elaboration at surface membrane, along with manifestation of FasR cap formation and internalization. In addition, the lipid raft organization is altered in K8-null hepatocytes. While lipid raft inhibition impairs SPOTS formation in both WT and K8-null hepatocytes, the absence of K8/K18 IFs in the latter sensitizes SPOTS to actin de-polymerization, and perturbs ezrin compartmentalization. Overall, the results indicate that the K8/K18 IF loss in hepatocytes alters the initial FasR activation steps through perturbation of ezrin/actin interplay and lipid raft organization, which leads to a type II/type I switch in FasR-death signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kumar S (1999) Mechanisms mediating caspase activation in cell death. Cell Death Differ 6(11):1060–1066

    Article  PubMed  CAS  Google Scholar 

  2. Zheng TS, Flavell RA (1999) Apoptosis. All’s well that ends dead. Nature 400(6743):410–411

    Article  PubMed  CAS  Google Scholar 

  3. Siegel RM, Muppidi JR, Sarker M, Lobito A, Jen M, Martin D, Straus SE, Lenardo MJ (2004) SPOTS: signaling protein oligomeric transduction structures are early mediators of death receptor-induced apoptosis at the plasma membrane. J Cell Biol 167(4):735–744

    Article  PubMed  CAS  Google Scholar 

  4. Peter ME, Krammer PH (2003) The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ 10(1):26–35

    Article  PubMed  CAS  Google Scholar 

  5. Barnhart BC, Alappat EC, Peter ME (2003) The CD95 type I/type II model. Semin Immunol 15(3):185–193

    Article  PubMed  CAS  Google Scholar 

  6. Park SM, Peter ME (2008) microRNAs and death receptors. Cytokine Growth Factor Rev 19(3–4):303–311

    Article  PubMed  Google Scholar 

  7. Wang X (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15(22):2922–2933

    PubMed  CAS  Google Scholar 

  8. Schutze S, Tchikov V, Schneider-Brachert W (2008) Regulation of TNFR1 and CD95 signalling by receptor compartmentalization. Nat Rev Mol Cell Biol 9(8):655–662

    Article  PubMed  Google Scholar 

  9. Hansen CG, Nichols BJ (2009) Molecular mechanisms of clathrin-independent endocytosis. J Cell Sci 122(11):1713–1721

    Article  PubMed  CAS  Google Scholar 

  10. Kenworthy AK (2008) Have we become overly reliant on lipid rafts? Talking Point on the involvement of lipid rafts in T-cell activation. EMBO Rep 9(6):531–535

    Article  PubMed  CAS  Google Scholar 

  11. Lajoie P, Goetz JG, Dennis JW, Nabi IR (2009) Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane. J Cell Biol 185(3):381–385

    Article  PubMed  CAS  Google Scholar 

  12. Browman DT, Hoegg MB, Robbins SM (2007) The SPFH domain-containing proteins: more than lipid raft markers. Trends Cell Biol 17(8):394–402

    Article  PubMed  CAS  Google Scholar 

  13. Schweizer J, Bowden PE, Coulombe PA, Langbein L, Lane EB, Magin TM, Maltais L, Omary MB, Parry DA, Rogers MA, Wright MW (2006) New consensus nomenclature for mammalian keratins. J Cell Biol 174(2):169–174

    Article  PubMed  CAS  Google Scholar 

  14. Coulombe PA, Wong P (2004) Cytoplasmic intermediate filaments revealed as dynamic and multipurpose scaffolds. Nat Cell Biol 6(8):699–706

    Article  PubMed  CAS  Google Scholar 

  15. Lane EB, Hogan BL, Kurkinen M, Garrels JI (1983) Co-expression of vimentin and cytokeratins in parietal endoderm cells of early mouse embryo. Nature 303(5919):701–704

    Article  PubMed  CAS  Google Scholar 

  16. Lu H, Hesse M, Peters B, Magin TM (2005) Type II keratins precede type I keratins during early embryonic development. Eur J Cell Biol 84(8):709–718

    Article  PubMed  CAS  Google Scholar 

  17. Marceau N, Loranger A, Gilbert S, Daigle N, Champetier S (2001) Keratin-mediated resistance to stress and apoptosis in simple epithelial cells in relation to health and disease. Biochem Cell Biol 79(5):543–555

    Article  PubMed  CAS  Google Scholar 

  18. Omary MB, Ku NO, Toivola DM (2002) Keratins: guardians of the liver. Hepatology 35(2):251–257

    Article  PubMed  CAS  Google Scholar 

  19. Oshima RG, Baribault H, Caulin C (1996) Oncogenic regulation and function of keratins 8 and 18. Cancer Metastasis Rev 15(4):445–471

    Article  PubMed  CAS  Google Scholar 

  20. Ku NO, Soetikno RM, Omary MB (2003) Keratin mutation in transgenic mice predisposes to Fas but not TNF-induced apoptosis and massive liver injury. Hepatology 37(5):1006–1014

    Article  PubMed  CAS  Google Scholar 

  21. Ku NO, Strnad P, Zhong BH, Tao GZ, Omary MB (2007) Keratins let liver live: mutations predispose to liver disease and crosslinking generates Mallory-Denk bodies. Hepatology 46(5):1639–1649

    Article  PubMed  CAS  Google Scholar 

  22. Marceau N, Schutte B, Gilbert S, Loranger A, Henfling ME, Broers JL, Mathew J, Ramaekers FC (2007) Dual roles of intermediate filaments in apoptosis. Exp Cell Res 313(10):2265–2281

    Article  PubMed  CAS  Google Scholar 

  23. Oshima RG (2002) Apoptosis and keratin intermediate filaments. Cell Death Differ 9(5):486–492

    Article  PubMed  CAS  Google Scholar 

  24. Nagata S (1999) Fas ligand-induced apoptosis. Annu Rev Genet 33:29–55

    Article  PubMed  CAS  Google Scholar 

  25. Lacronique V, Mignon A, Fabre M, Viollet B, Rouquet N, Molina T, Porteu A, Henrion A, Bouscary D, Varlet P, Joulin V, Kahn A (1996) Bcl-2 protects from lethal hepatic apoptosis induced by an anti-Fas antibody in mice. Nat Med 2(1):80–86

    Article  PubMed  CAS  Google Scholar 

  26. de la Coste A, Fabre M, McDonell N, Porteu A, Gilgenkrantz H, Perret C, Kahn A, Mignon A (1999) Differential protective effects of Bcl-xL and Bcl-2 on apoptotic liver injury in transgenic mice. Am J Physiol 277(3 Pt 1):G702–G708

    PubMed  Google Scholar 

  27. Yin XM, Wang K, Gross A, Zhao Y, Zinkel S, Klocke B, Roth KA, Korsmeyer SJ (1999) Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400(6747):886–891

    Article  PubMed  CAS  Google Scholar 

  28. Gilbert S, Loranger A, Daigle N, Marceau N (2001) Simple epithelium keratins 8 and 18 provide resistance to Fas-mediated apoptosis. The protection occurs through a receptor-targeting modulation. J Cell Biol 154(4):763–773

    Article  PubMed  CAS  Google Scholar 

  29. Gilbert S, Loranger A, Marceau N (2004) Keratins modulate c-Flip/extracellular signal-regulated kinase 1 and 2 antiapoptotic signaling in simple epithelial cells. Mol Cell Biol 24(16):7072–7081

    Article  PubMed  CAS  Google Scholar 

  30. Huang DC, Hahne M, Schroeter M, Frei K, Fontana A, Villunger A, Newton K, Tschopp J, Strasser A (1999) Activation of Fas by FasL induces apoptosis by a mechanism that cannot be blocked by Bcl-2 or Bcl-x(L). Proc Natl Acad Sci USA 96(26):14871–14876

    Article  PubMed  CAS  Google Scholar 

  31. Gilbert S, Ruel A, Loranger A, Marceau N (2008) Switch in Fas-activated death signaling pathway as result of keratin 8/18-intermediate filament loss. Apoptosis 13(12):1479–1493. doi:10.1007/s10495-008-0274-x

    Article  PubMed  CAS  Google Scholar 

  32. Marceau N, Gilbert S, Loranger A (2004) Uncovering the roles of intermediate filaments in apoptosis. Methods Cell Biol 78:95–129

    Article  PubMed  CAS  Google Scholar 

  33. Wieckowski MR, Giorgi C, Lebiedzinska M, Duszynski J, Pinton P (2009) Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells. Nat Protoc 4(11):1582–1590. doi:10.1038/nprot.2009.151

    Article  PubMed  CAS  Google Scholar 

  34. Zeidan YH, Jenkins RW, Hannun YA (2008) Remodeling of cellular cytoskeleton by the acid sphingomyelinase/ceramide pathway. J Cell Biol 181(2):335–350. doi:10.1083/jcb.200705060

    Article  PubMed  CAS  Google Scholar 

  35. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  PubMed  CAS  Google Scholar 

  36. Kabouridis PS, Janzen J, Magee AL, Ley SC (2000) Cholesterol depletion disrupts lipid rafts and modulates the activity of multiple signaling pathways in T lymphocytes. Eur J Immunol 30(3):954–963. doi:10.1002/1521-4141(200003)30:3<954:AID-IMMU954>3.0.CO;2-Y

    Article  PubMed  CAS  Google Scholar 

  37. Ismair MG, Hausler S, Stuermer CA, Guyot C, Meier PJ, Roth J, Stieger B (2009) ABC-transporters are localized in caveolin-1-positive and reggie-1-negative and reggie-2-negative microdomains of the canalicular membrane in rat hepatocytes. Hepatology 49(5):1673–1682

    Article  PubMed  CAS  Google Scholar 

  38. Bordeleau F, Galarneau L, Gilbert S, Loranger A, Marceau N (2010) Keratin 8/18 modulation of protein kinase C-mediated integrin-dependent adhesion and migration of liver epithelial cells. Mol Biol Cell 21(10):1698–1713. doi:10.1091/mbc.E09-05-0373

    Article  PubMed  CAS  Google Scholar 

  39. Mathew J, Galarneau L, Loranger A, Gilbert S, Marceau N (2008) Keratin-protein kinase C interaction in reactive oxygen species-induced hepatic cell death through mitochondrial signaling. Free Radic Biol Med 45(4):413–424

    Article  PubMed  CAS  Google Scholar 

  40. Fais S, De Milito A, Lozupone F (2005) The role of FAS to ezrin association in FAS-mediated apoptosis. Apoptosis 10(5):941–947. doi:10.1007/s10495-005-0478-2

    Article  PubMed  CAS  Google Scholar 

  41. Giammarioli AM, Garofalo T, Sorice M, Misasi R, Gambardella L, Gradini R, Fais S, Pavan A, Malorni W (2001) GD3 glycosphingolipid contributes to Fas-mediated apoptosis via association with ezrin cytoskeletal protein. FEBS Lett 506(1):45–50

    Article  PubMed  CAS  Google Scholar 

  42. Wang W, Soroka CJ, Mennone A, Rahner C, Harry K, Pypaert M, Boyer JL (2006) Radixin is required to maintain apical canalicular membrane structure and function in rat hepatocytes. Gastroenterology 131(3):878–884. doi:10.1053/j.gastro.2006.06.013

    Article  PubMed  CAS  Google Scholar 

  43. Chaigne-Delalande B, Moreau JF, Legembre P (2008) Rewinding the DISC. Arch Immunol Ther Exp (Warsz) 56(1):9–14

    Article  CAS  Google Scholar 

  44. Algeciras-Schimnich A, Pietras EM, Barnhart BC, Legembre P, Vijayan S, Holbeck SL, Peter ME (2003) Two CD95 tumor classes with different sensitivities to antitumor drugs. Proc Natl Acad Sci USA 100(20):11445–11450. doi:10.1073/pnas.2034995100

    Article  PubMed  CAS  Google Scholar 

  45. Haouzi D, Baghdiguian S, Granier G, Travo P, Mangeat P, Hibner U (2005) Three-dimensional polarization sensitizes hepatocytes to Fas/CD95 apoptotic signalling. J Cell Sci 118(Pt 12):2763–2773. doi:10.1242/jcs.02403

    Article  PubMed  CAS  Google Scholar 

  46. McNiven MA, Wolkoff AW, Hubbard A (2009) A stimulus needed for the study of membrane traffic in hepatocytes. Hepatology 50(2):345–348

    Article  PubMed  Google Scholar 

  47. Mazzone A, Tietz P, Jefferson J, Pagano R, LaRusso NF (2006) Isolation and characterization of lipid microdomains from apical and basolateral plasma membranes of rat hepatocytes. Hepatology 43(2):287–296

    Article  PubMed  CAS  Google Scholar 

  48. Tietz P, Jefferson J, Pagano R, Larusso NF (2005) Membrane microdomains in hepatocytes: potential target areas for proteins involved in canalicular bile secretion. J Lipid Res 46(7):1426–1432. doi:10.1194/jlr.M400412-JLR200

    Article  PubMed  CAS  Google Scholar 

  49. Moreno M, Molina H, Amigo L, Zanlungo S, Arrese M, Rigotti A, Miquel JF (2003) Hepatic overexpression of caveolins increases bile salt secretion in mice. Hepatology 38(6):1477–1488

    PubMed  CAS  Google Scholar 

  50. Fehon RG, McClatchey AI, Bretscher A (2010) Organizing the cell cortex: the role of ERM proteins. Nat Rev Mol Cell Biol 11(4):276–287. doi:10.1038/nrm2866

    Article  PubMed  CAS  Google Scholar 

  51. Rossin A, Kral R, Lounnas N, Chakrabandhu K, Mailfert S, Marguet D, Hueber AO (2010) Identification of a lysine-rich region of Fas as a raft nanodomain targeting signal necessary for Fas-mediated cell death. Exp Cell Res 316(9):1513–1522. doi:10.1016/j.yexcr.2010.03.002

    Article  PubMed  CAS  Google Scholar 

  52. Algeciras-Schimnich A, Peter ME (2003) Actin dependent CD95 internalization is specific for Type I cells. FEBS Lett 546(2–3):185–188

    Article  PubMed  CAS  Google Scholar 

  53. Wald FA, Oriolo AS, Casanova ML, Salas PJ (2005) Intermediate filaments interact with dormant ezrin in intestinal epithelial cells. Mol Biol Cell 16(9):4096–4107. doi:10.1091/mbc.E05-03-0242

    Article  PubMed  CAS  Google Scholar 

  54. Ku NO, Omary MB (2006) A disease- and phosphorylation-related nonmechanical function for keratin 8. J Cell Biol 174(1):115–125

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank H. Baribault for the original WT and K8-null mouse colonies, R. Kemler for the TROMA-1 hybridoma, J. Lippincott-Schwartz for the PAGFP vector and A. Helenius for the caveolin-1-mRFP construct. This work was supported by the Canadian Institutes of Health Research (MOP 15529 to NM; MOP 49450 to JNL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Normand Marceau.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10495_2012_733_MOESM1_ESM.tif

Online Resource 1: FasR capping is increased in absence of K8/K18 IFs. a Confocal imaging of FasR after the addition of FasL (100 ng/ml) for 60 min, showing more pronounced cap structure (white arrow) formation in K8-null than WT hepatocytes. b Quantification of the percentage of cells with caps at their surface as function of time following a stimulation with FasL (100 ng/ml) (TIFF 29865 kb)

10495_2012_733_MOESM2_ESM.tif

Online Resource 2: FasR internalization is observed only in cell without K8/K18 IFs. Confocal images of Jo2-PE at cell middle plan of WT and K8-null hepatocytes in presence of Jo2-PE (0.5 μg/ml) + PA (0.1 μg/ml), showing FasR internalization (red arrow in zoom panel) only in K8-null hepatocytes, starting at 30 min after being put back at 37 °C (TIFF 6852 kb)

10495_2012_733_MOESM3_ESM.tif

Online Resource 3: Faster FasR SPOTS formation in K8-null hepatocytes monitored by real-time confocal microscopy and alignment with caveolin-1. Real-time confocal imaging at the surface plan of WT (a) and K8-null (b) hepatocytes transfected with FasR-EGFP (green) and caveolin-1-mRFP (red), and stimulated with Jo2 (0.5 μg/ml) + PA (0.1 μg/ml), showing a faster FasR SPOTS formation (yellow circle) in K8-null compare to WT hepatocytes, and an alignment of caveolin-1 with FasR SPOTS. Images were taken each 30 s for a 30 min period (TIFF 11532 kb)

10495_2012_733_MOESM4_ESM.tif

Online Resource 4: Radixin co-distibrutes with actin and flotillin-2 at bile canaliculi but not with FasR. a Confocal imaging of radixin (green), actin (red) and nucleus (blue) in WT and K8-null hepatocytes, showing a co-distribution of actin and radixin at bile canaliculi of both cell types. b Confocal imaging of radixin (red), flotillin-2 (green) and nucleus (blue) in WT and K8-null hepatocytes, showing a co-distribution of flotillin-2 and radixin at bile canaliculi of both cell types; FasR stimulation led to the appearance of flotillin-2 at the surface membrane in K8-null hepatocytes, in co-localization with radixin. c Confocal imaging of radixin (green), FasR (red) and nucleus (blue) in WT and K8-null hepatocytes, revealing an absence of FasR and radixin co-localization (TIFF 21699 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilbert, S., Loranger, A., Lavoie, J.N. et al. Cytoskeleton keratin regulation of FasR signaling through modulation of actin/ezrin interplay at lipid rafts in hepatocytes. Apoptosis 17, 880–894 (2012). https://doi.org/10.1007/s10495-012-0733-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-012-0733-2

Keywords

Navigation