Skip to main content
Log in

Regulation by survivin of cancer cell death induced by F14512, a polyamine-containing inhibitor of DNA topoisomerase II

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

F14512, an epipodophyllotoxin derivative equipped with a spermine moiety, is selectively taken up by the polyamine transport system over-active in tumor cells. F14512 was identified as a selective anticancer agent with a broad spectrum of antitumor activities and is currently undergoing phase I clinical trial in onco-hematology. However, the mechanism by which F14512 exerts its selective effects on neoplastic cells remains poorly understood. In this study, using mainly P388 leukemia cells, we showed that activation of the DNA damage response by F14512 did not induce immediate apoptosis but resulted in an early growth arrest. F14512-induced G2 arrest was accompanied by the appearance of a senescence-like phenotype (characterized by an increased β-galactosidase staining) with up-regulation of the cyclin-dependent kinase inhibitor p16, and cyclin D1. The early senescence-based cell cycle block was characterized by a marked increase of the level of the IAP protein survivin, but not cIAP2, in P388 cells as well as in three other leukemia and melanoma cell types. The Thr(34)-phosphorylated form of survivin was observed within 4 h after F14512 exposure. Inhibition of survivin by siRNA resulted in a switch from senescence-like growth arrest to apoptosis. Compared with the parental drug etoposide, F14512-induced DNA damage signaling pathway resulted in greater senescence like-growth arrest and delayed apoptosis. Collectively, our data show that senescence arrest and subsequent apoptosis are powerful mechanisms mediating the chemotherapeutic effects of F14512 and identify survivin as the molecular determinant responsible for a qualitative shift in cell fate from senescence to apoptosis upon treatment with F14512.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

IAP:

Inhibitor of apoptosis

DSBs:

Double-strand breaks

RT:

Room temperature

z.VAD.fmk:

Benzyloxycarbonyl-Val-Ala-DL-Asp-fluoromethylketone

PTS:

Polyamine transport system

NSCLC:

Non small cell lung carcinoma

Reference list

  1. Xie S, Wang J, Zhang Y, Wang C (2010) Antitumor conjugates with polyamine vectors and their molecular mechanisms. Expert Opin Drug Deliv 7:1049–1061

    Article  PubMed  CAS  Google Scholar 

  2. Barret J-M, Kruczynski A, Vispé S, Annereau J-P, Brel V, Guminski Y, Delcros J-G, Lansiaux A, Guilbaud N, Imbert T, Bailly C (2008) F14512, a potent antitumor agent targeting topoisomerase II vectored into cancer cells via the polyamine transport system. Cancer Res 68:9845–9853

    Article  PubMed  CAS  Google Scholar 

  3. Annereau J-P, Brel V, Dumontet C, Guminski Y, Imbert T, Broussas M, Vispé S, Bréand S, Guilbaud N, Barret JM, Bailly C (2010) A fluorescent biomarker of the polyamine transport system to select patients with AML for F14512 treatment. Leuk Res 34:1383–1389

    Article  PubMed  CAS  Google Scholar 

  4. Kruczynski A, Vandenberghe I, Pillon A, Pesnel S, Goetsch L, Barret J-M, Guminski Y, Le Pape A, Imbert T, Bailly C, Guilbaud N (2011) Preclinical activity of F14512, designed to target tumors expressing an active polyamine transport system. Investig New Drugs 29:9–21

    Article  CAS  Google Scholar 

  5. Gentry AC, Pitts SL, Jablonsky MJ, Bailly C, Graves DE, Osheroff N (2011) Interactions between the etoposide derivative F14512 and human type II topoisomerases: implications for the C4 spermine moiety in promoting enzyme-mediated DNA cleavage. Biochemistry 50:3240–3249

    Article  PubMed  CAS  Google Scholar 

  6. Chelouah S, Monod-Wissler C, Bailly C, Barret J-M, Guilbaud N, Vispé S, Käs E (2011) An integrated drosophila model system reveals unique properties for F14512, a novel polyamine-containing anticancer drug that targets topoisomerase II. PLoS One 6:e23597

    Article  PubMed  CAS  Google Scholar 

  7. Nitiss JL (2009) Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer 9:338–350

    Article  PubMed  CAS  Google Scholar 

  8. Chang BD, Broude EV, Dokmanovic M, Zhu H, Ruth A, Xuan Y, Kandel ES, Lausch E, Christov K, Roninson IB (1999) A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res 59:3761–3767

    PubMed  CAS  Google Scholar 

  9. Sordet O, Khan QA, Kohn KW, Pommier Y (2003) Apoptosis induced by topoisomerase inhibitors. Curr Med Chem Anticancer Agents 3:271–290

    Article  PubMed  CAS  Google Scholar 

  10. Montecucco A, Biamonti G (2007) Cellular response to etoposide treatment. Cancer Lett 252:9–18

    Article  PubMed  CAS  Google Scholar 

  11. Chiu CC, Li CH, Ung MW, Fuh TS, Chen WL, Fang K (2005) Etoposide (VP-16) elicits apoptosis following prolonged G2-M cell arrest in p53-mutated human non-small cell lung cancer cells. Cancer Lett 223:249–258

    Article  PubMed  CAS  Google Scholar 

  12. Ishiguro K, Shyam K, Penketh PG, Sartorelli AC (2005) Role of O6-alkylguanine-DNA alkyltransferase in the cytotoxic activity of cloretazine. Mol Cancer Ther 4:1755–1763

    Article  PubMed  CAS  Google Scholar 

  13. Ballot C, Kluza J, Lancel S, Martoriati A, Hassoun SM, Mortier L, Vienne JC, Briand G, Formstecher P, Bailly C, Neviere R, Marchetti P (2010) Inhibition of mitochondrial respiration mediates apoptosis induced by the anti-tumoral alkaloid lamellarin D. Apoptosis 15:769–781

    Article  PubMed  CAS  Google Scholar 

  14. Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O (2009) Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 4:1798–1806

    Article  PubMed  CAS  Google Scholar 

  15. Ballot C, Kluza J, Martoriati A, Nyman U, Formstecher P, Joseph B, Bailly C, Marchetti P (2009) Essential role of mitochondria in apoptosis of cancer cells induced by the marine alkaloid Lamellarin D. Mol Cancer Ther 8:3307–3317

    Article  PubMed  CAS  Google Scholar 

  16. Kawabe Y, Ochi A (1991) Programmed cell death and extrathymic reduction of Vbeta8 + CD4 + T cells in mice tolerant to Staphylococcus aureus enterotoxin B. Nature 349:245–248

    Article  PubMed  CAS  Google Scholar 

  17. Gallego M-A, Ballot C, Kluza J, Hajji N, Martoriati A, Castéra L, Cuevas C, Formstecher P, Joseph B, Kroemer G, Bailly C, Marchetti P (2008) Overcoming chemoresistance of non-small cell lung carcinoma through restoration of an AIF-dependent apoptotic pathway. Oncogene 27:1981–1992

    Article  PubMed  CAS  Google Scholar 

  18. Gallego M-A, Joseph B, Hemström TH, Tamiji S, Mortier L, Kroemer G, Formstecher P, Zhivotovsky B, Marchetti P (2004) Apoptosis-inducing factor determines the chemoresistance of non-small-cell lung carcinomas. Oncogene 23:6282–6291

    Article  PubMed  CAS  Google Scholar 

  19. Castera L, Hatzfeld-Charbonnier AS, Ballot C, Charbonnel F, Dhuiege E, Velu T, Formstecher P, Mortier L, Marchetti P (2009) Apoptosis-related mitochondrial dysfunction defines human monocyte-derived dendritic cells with impaired immuno-stimulatory capacities. J Cell Mol Med 13:1321–1335

    Article  PubMed  CAS  Google Scholar 

  20. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367

    Article  PubMed  CAS  Google Scholar 

  21. Chang BD, Swift ME, Shen M, Fang J, Broude EV, Roninson IB (2002) Molecular determinants of terminal growth arrest induced in tumor cells by a chemotherapeutic agent. Proc Natl Acad Sci USA 99:389–394

    Article  PubMed  CAS  Google Scholar 

  22. O’Connor DS, Grossman D, Plescia J, Li F, Zhang H, Villa A, Tognin S, Marchisio PC, Altieri DC (2000) Regulation of apoptosis at cell division by p34cdc2 phosphorylation of survivin. Proc Natl Acad Sci USA 97:13103–13107

    Article  PubMed  Google Scholar 

  23. Altieri DC (2008) Survivin, cancer networks and pathway-directed drug discovery. Nat Rev Cancer 8:61–70

    Article  PubMed  CAS  Google Scholar 

  24. Provenzano M, Bracci L, Wyler S, Hudolin T, Sais G, Gosert R, Zajac P, Palu G, Heberer M, Hirsch HH, Spagnoli GC (2006) Characterization of highly frequent epitope-specific CD45RA+/CCR7+/− T lymphocyte responses against p53-binding domains of the human polyomavirus BK large tumor antigen in HLA-A*0201 + BKV-seropositive donors. J Transl Med 4:47

    Article  PubMed  Google Scholar 

  25. Kurz DJ, Decary S, Hong Y, Erusalimsky JD (2000) Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci 113(Pt 20):3613–3622

    PubMed  CAS  Google Scholar 

  26. Elmore LW, Rehder CW, Di X, McChesney PA, Jackson-Cook CK, Gewirtz DA, Holt SE (2002) Adriamycin-induced senescence in breast tumor cells involves functional p53 and telomere dysfunction. J Biol Chem 277:35509–35515

    Article  PubMed  CAS  Google Scholar 

  27. Rebbaa A, Zheng X, Chou PM, Mirkin BL (2003) Caspase inhibition switches doxorubicin-induced apoptosis to senescence. Oncogene 22:2805–2811

    Article  PubMed  CAS  Google Scholar 

  28. Mansilla S, Piña B, Portugal J (2003) Daunorubicin-induced variations in gene transcription: commitment to proliferation arrest, senescence and apoptosis. Biochem J 372:703–711

    Article  PubMed  CAS  Google Scholar 

  29. Ewald JA, Desotelle JA, Wilding G, Jarrard DF (2010) Therapy-induced senescence in cancer. J Natl Cancer Inst 102:1536–1546

    Article  PubMed  CAS  Google Scholar 

  30. O’Connor DS, Wall NR, Porter ACG, Altieri DC (2002) A p34(cdc2) survival checkpoint in cancer. Cancer Cell 2:43–54

    Article  PubMed  Google Scholar 

  31. Wang Q, Wu PC, Roberson RS, Luk BV, Ivanova I, Chu E, Wu DY (2011) Survivin and escaping in therapy-induced cellular senescence. Int J Cancer 128:1546–1558

    Article  PubMed  CAS  Google Scholar 

  32. Kanwar RK, Cheung CHA, Chang J-Y, Kanwar JR (2010) Recent advances in anti-survivin treatments for cancer. Curr Med Chem 17:1509–1515

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work received a financial support from INSERM, UNIVERSITE DE LILLE II, the Ligue Contre le Cancer (Comité de l’Aisne) and the Institut de Recherche Pierre Fabre (to PM). JK received a fellowship from the ARC. The authors acknowledge the Institut de Recherche Pierre Fabre (IRPF) for providing F96982 and F14512 and for useful discussions with the CROE research group.

Conflict of interest

Christian Bailly is employed by Pierre Fabre Médicament which provided a support to this work. The products F96982 and F14512 were synthesized by Pierre Fabre Médicament.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Marchetti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 1162 kb)

Supplementary material 2 (EPS 6246 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballot, C., Jendoubi, M., Kluza, J. et al. Regulation by survivin of cancer cell death induced by F14512, a polyamine-containing inhibitor of DNA topoisomerase II. Apoptosis 17, 364–376 (2012). https://doi.org/10.1007/s10495-011-0681-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-011-0681-2

Keywords

Navigation