Skip to main content

Advertisement

Log in

Cryptotanshinone induces ER stress-mediated apoptosis in HepG2 and MCF7 cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The endoplasmic reticulum (ER) is a central organelle in eukaryotic cells that functions in protein synthesis and maturation, and also functions as a calcium storage organelle. Perturbation of ER functions leads to ER stress, which has been previously associated with a broad variety of diseases. ER stress is generally regarded as compensatory, but prolonged ER stress can activate apoptotic pathways in damaged cells. For this reason, pharmacological interventions that effectively enhance tumor death through ER stress have been the subject of a great deal of attention for anti-cancer therapy. Cryptotanshinone, the major active constituent isolated from the root of Salvia miltiorrhiza Bunge, has been recently evaluated for its anti-cancer activity, but the molecular mechanisms underlying these activities remain poorly understood. In particular, it remains completely unknown as to whether or not cryptotanshinone can induce ER stress. Herein, we identify cryptotanshinone as a potent stimulator of ER stress, leading to apoptosis in many cancer cell lines, including HepG2 hepatoma and MCF7 breast carcinoma, and also demonstrate that mitogen-activated protein kinases function as mediators in this process. Reactive oxygen species generated by cryptotanshinone have been shown to play a critical role in ER stress-induced apoptosis. Cryptotanshinone also evidenced sensitizing effects to a broad range of anti-cancer agents including Fas/Apo-1, TNF-α, cisplatin, etoposide or 5-FU through inducing ER stress, highlighting the therapeutic potential in the treatment of human hepatoma and breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gorlach A, Klappa P, Kietzmann T (2006) The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control. Antioxid Redox Signal 8:1391–1418

    Article  PubMed  Google Scholar 

  2. Brostrom MA, Brostrom CO (2003) Calcium dynamics and endoplasmic reticular function in the regulation of protein synthesis: implications for cell growth and adaptability. Cell Calcium 34:345–363

    Article  PubMed  CAS  Google Scholar 

  3. Hosoi T, Ozawa K (2010) Endoplasmic reticulum stress in disease: mechanisms and therapeutic opportunities. Clin Sci Lond 118:19–29

    Article  Google Scholar 

  4. Kozutsumi Y, Segal M, Normington K, Gething MJ, Sambrook J (1988) The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332:462–464

    Article  PubMed  CAS  Google Scholar 

  5. Shore GC, Papa FR, Oakes SA (2011) Signaling cell death from the endoplasmic reticulum stress response. Curr Opin Cell Biol 23:143–149

    Article  PubMed  CAS  Google Scholar 

  6. Breckenridge DG, Germain M, Mathai JP, Nguyen M, Shore GC (2003) Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 22:8608–8618

    Article  PubMed  CAS  Google Scholar 

  7. Herr I, Debatin KM (2001) Cellular stress response and apoptosis in cancer therapy. Blood 98:2603–2614

    Article  PubMed  CAS  Google Scholar 

  8. Kim I, Shu CW, Xu W et al (2009) Chemical biology investigation of cell death pathways activated by endoplasmic reticulum stress reveals cytoprotective modulators of ASK1. J Biol Chem 284:1593–1603

    Article  PubMed  CAS  Google Scholar 

  9. Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7:880–885

    Article  PubMed  CAS  Google Scholar 

  10. Li J, Lee B, Lee AS (2006) Endoplasmic reticulum stress-induced apoptosis: multiple pathways and activation of p53-up-regulated modulator of apoptosis (PUMA) and NOXA by p53. J Biol Chem 281:7260–7270

    Article  PubMed  CAS  Google Scholar 

  11. Salazar M, Carracedo A, Salanueva IJ et al (2009) Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J Clin Invest 119:1359–1372

    Article  PubMed  CAS  Google Scholar 

  12. Armstrong JL, Flockhart R, Veal GJ, Lovat PE, Redfern CP (2010) Regulation of endoplasmic reticulum stress-induced cell death by ATF4 in neuroectodermal tumor cells. J Biol Chem 285:6091–6100

    Article  PubMed  CAS  Google Scholar 

  13. Healy SJ, Gorman AM, Mousavi-Shafaei P, Gupta S, Samali A (2009) Targeting the endoplasmic reticulum-stress response as an anticancer strategy. Eur J Pharmacol 625:234–246

    Article  PubMed  CAS  Google Scholar 

  14. Jin DZ, Yin LL, Ji XQ, Zhu XZ (2006) Cryptotanshinone inhibits cyclooxygenase-2 enzyme activity but not its expression. Eur J Pharmacol 549:166–172

    Article  PubMed  CAS  Google Scholar 

  15. Kim EJ, Jung SN, Son KH et al (2007) Antidiabetes and antiobesity effect of cryptotanshinone via activation of AMP-activated protein kinase. Mol Pharmacol 72:62–72

    Article  PubMed  CAS  Google Scholar 

  16. Mosaddik MA (2003) In vitro cytotoxicity of tanshinones isolated from Salvia miltiorrhiza Bunge against P388 lymphocytic leukemia cells. Phytomedicine 10:682–685

    Article  PubMed  CAS  Google Scholar 

  17. Suh SJ, Jin UH, Choi HJ et al (2006) Cryptotanshinone from Salvia miltiorrhiza BUNGE has an inhibitory effect on TNF-alpha-induced matrix metalloproteinase-9 production and HASMC migration via down-regulated NF-kappaB and AP-1. Biochem Pharmacol 72:1680–1689

    Article  PubMed  CAS  Google Scholar 

  18. Dat NT, Jin X, Lee JH et al (2007) Abietane diterpenes from Salvia miltiorrhiza inhibit the activation of hypoxia-inducible factor-1. J Nat Prod 70:1093–1097

    Article  PubMed  CAS  Google Scholar 

  19. Shin DS, Kim HN, Shin KD et al (2009) Cryptotanshinone inhibits constitutive signal transducer and activator of transcription 3 function through blocking the dimerization in DU145 prostate cancer cells. Cancer Res 69:193–202

    Article  PubMed  CAS  Google Scholar 

  20. Lee WY, Liu KW, Yeung JH (2009) Reactive oxygen species-mediated kinase activation by dihydrotanshinone in tanshinones-induced apoptosis in HepG2 cells. Cancer Lett 285:46–57

    Article  PubMed  CAS  Google Scholar 

  21. Ye Y, Xu W, Zhong W (2010) Effects of cryptotanshinone on proliferation and apoptosis of HeLa cell line of cervical cancer. Zhongguo Zhong Yao Za Zhi 35:118–121

    PubMed  CAS  Google Scholar 

  22. Chen W, Luo Y, Liu L et al (2010) Cryptotanshinone inhibits cancer cell proliferation by suppressing Mammalian target of rapamycin-mediated cyclin D1 expression and Rb phosphorylation. Cancer Prev Res Phila 3:1015–1025

    Article  PubMed  CAS  Google Scholar 

  23. Hur JM, Shim JS, Jung HJ, Kwon HJ (2005) Cryptotanshinone but not tanshinone IIA inhibits angiogenesisin vitro. Exp Mol Med 37:133–137

    PubMed  CAS  Google Scholar 

  24. Nagai H, Noguchi T, Takeda K, Ichijo H (2007) Pathophysiological roles of ASK1-MAP kinase signaling pathways. J Biochem Mol Biol 40:1–6

    Article  PubMed  CAS  Google Scholar 

  25. Sekine Y, Takeda K, Ichijo H (2006) The ASK1-MAP kinase signaling in ER stress and neurodegenerative diseases. Curr Mol Med 6:87–97

    Article  PubMed  CAS  Google Scholar 

  26. Indran IR, Tufo G, Pervaiz S, Brenner C (2011) Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. Biochim Biophys Acta 1807:735–745

    Article  PubMed  CAS  Google Scholar 

  27. Igney FH, Krammer PH (2002) Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2:277–288

    Article  PubMed  CAS  Google Scholar 

  28. Srivastava RK, Sasaki CY, Hardwick JM, Longo DL (1999) Bcl-2-mediated drug resistance: inhibition of apoptosis by blocking nuclear factor of activated T lymphocytes (NFAT)-induced Fas ligand transcription. J Exp Med 190:253–265

    Article  PubMed  CAS  Google Scholar 

  29. Kawahara A, Kobayashi T, Nagata S (1998) Inhibition of Fas-induced apoptosis by Bcl-2. Oncogene 17:2549–2554

    Article  PubMed  CAS  Google Scholar 

  30. Straszewski-Chavez SL, Abrahams VM, Funai EF, Mor G (2004) X-linked inhibitor of apoptosis (XIAP) confers human trophoblast cell resistance to Fas-mediated apoptosis. Mol Hum Reprod 10:33–41

    Article  PubMed  CAS  Google Scholar 

  31. Osawa T, Muramatsu M, Watanabe M, Shibuya M (2009) Hypoxia and low-nutrition double stress induces aggressiveness in a murine model of melanoma. Cancer Sci 100:844–851

    Article  PubMed  CAS  Google Scholar 

  32. Lee AS (2001) The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem Sci 26:504–510

    Article  PubMed  CAS  Google Scholar 

  33. Kitamura M (2008) Endoplasmic reticulum stress and unfolded protein response in renal pathophysiology: Janus faces. Am J Physiol Renal Physiol 295:323–334

    Article  Google Scholar 

  34. Xu C, Bailly-Maitre B, Reed JC (2005) Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 115:2656–2664

    Article  PubMed  CAS  Google Scholar 

  35. Seger R, Krebs EG (1995) The MAPK signaling cascade. FASEB J 9:726–735

    PubMed  CAS  Google Scholar 

  36. Wada T, Penninger JM (2004) Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23:2838–2849

    Article  PubMed  CAS  Google Scholar 

  37. Han JY, Fan JY, Horie Y et al (2008) Ameliorating effects of compounds derived from Salvia miltiorrhiza root extract on microcirculatory disturbance and target organ injury by ischemia and reperfusion. Pharmacol Ther 117:280–295

    Article  PubMed  CAS  Google Scholar 

  38. Debatin KM, Krammer PH (2004) Death receptors in chemotherapy and cancer. Oncogene 23:2950–2966

    Article  PubMed  CAS  Google Scholar 

  39. Kruyt FA (2008) TRAIL and cancer therapy. Cancer Lett 263:14–25

    Article  PubMed  CAS  Google Scholar 

  40. Mahmood Z, Shukla Y (2010) Death receptors: targets for cancer therapy. Exp Cell Res 316:887–899

    Article  PubMed  CAS  Google Scholar 

  41. Kim JH, Jeong SJ, Kwon TR et al (2011) Cryptotanshinone enhances TNF-alpha-induced apoptosis in chronic myeloid leukemia KBM-5 cells. Apoptosis 16:696–707

    Article  PubMed  CAS  Google Scholar 

  42. Park IJ, Kim MJ, Park OJ et al (2010) Cryptotanshinone sensitizes DU145 prostate cancer cells to Fas(APO1/CD95)-mediated apoptosis through Bcl-2 and MAPK regulation. Cancer Lett 298:88–98

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2011-0030722).

Conflict of interest

No conflict of interest is declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joohun Ha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, IJ., Kim, MJ., Park, O.J. et al. Cryptotanshinone induces ER stress-mediated apoptosis in HepG2 and MCF7 cells. Apoptosis 17, 248–257 (2012). https://doi.org/10.1007/s10495-011-0680-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-011-0680-3

Keywords

Navigation