Skip to main content
Log in

ER stress sensitizes cells to TRAIL through down-regulation of FLIP and Mcl-1 and PERK-dependent up-regulation of TRAIL-R2

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Despite recent evidences suggesting that agents inducing endoplasmic reticulum (ER) stress could be exploited as potential antitumor drugs in combination with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), the mechanisms of this anticancer action are not fully understood. Moreover, the effects of ER stress and TRAIL in nontransformed cells remain to be investigated. In this study we report that ER stress-inducing agents sensitizes both transformed and nontransformed cells to TRAIL-induced apoptosis. In addition, glucose-regulated protein of 78 kDa (GRP78) knockdown by RNA interference induces ER stress and facilitates apoptosis by TRAIL. We demonstrate that TRAIL death-inducing signaling complex (DISC) formation and early signaling are enhanced in ER stressed cells. ER stress alters the cellular levels of different apoptosis-related proteins including a decline in the levels of FLIP and Mcl-1 and the up-regulation of TRAIL-R2. Up-regulation of TRAIL-R2 following ER stress is dependent on the expression of PKR-like ER kinase (PERK) and independent of CAAT/enhancer binding protein homologous protein (CHOP) and Ire1α. Silencing of TRAIL-R2 expression by siRNA blocks the ER stress-mediated sensitization to TRAIL-induced apoptosis. Furthermore, simultaneous silencing of cFLIP and Mcl-1 expression by RNA interference results in a marked sensitization to TRAIL-induced apoptosis. Finally, in FLIP-overexpressing cells ER stress-induced sensitization to TRAIL-activated apoptosis is markedly reduced. In summary, our data reveal a pleiotropic mechanism involving both apoptotic and anti-apoptotic proteins for the sensitizing effect of ER stress on the regulation of TRAIL receptor-mediated apoptosis in both transformed and nontransformed cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ashkenazi A (2008) Directing cancer cells to self-destruct with pro-apoptotic receptor agonists. Nat Rev Drug Discov 7:1001–1012

    Article  PubMed  CAS  Google Scholar 

  2. Sprick MR, Weigand MA, Rieser E et al (2000) FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity 12:599–609

    Article  PubMed  CAS  Google Scholar 

  3. Deng Y, Lin Y, Wu X (2002) TRAIL-induced apoptosis requires Bax-dependent mitochondrial release of Smac/DIABLO. Genes Dev 16:33–45

    Article  PubMed  CAS  Google Scholar 

  4. Irmler M, Thome M, Hahne M et al (1997) Inhibition of death receptor signals by cellular FLIP. Nature 388:190–195

    Article  PubMed  CAS  Google Scholar 

  5. Krueger A, Schmitz I, Baumann S, Krammer PH, Kirchhoff S (2001) Cellular FLICE-inhibitory protein splice variants inhibit different steps of caspase-8 activation at the CD95 death-inducing signaling complex. J Biol Chem 276:20633–20640

    Article  PubMed  CAS  Google Scholar 

  6. Sharp DA, Lawrence DA, Ashkenazi A (2005) Selective knockdown of the long variant of cellular FLICE inhibitory protein augments death receptor-mediated caspase-8 activation and apoptosis. J Biol Chem 280:19401–19409

    Article  PubMed  CAS  Google Scholar 

  7. Yeh WC, Itie A, Elia AJ et al (2000) Requirement for Casper (c-FLIP) in regulation of death receptor-induced apoptosis and embryonic development. Immunity 12:633–642

    Article  PubMed  CAS  Google Scholar 

  8. Keane MM, Ettenberg SA, Nau MM, Russell EK, Lipkowitz S (1999) Chemotherapy augments TRAIL-induced apoptosis in breast cell lines. Cancer Res 59:734–741

    PubMed  CAS  Google Scholar 

  9. Wang S, El-Deiry WS (2003) TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22:8628–8633

    Article  PubMed  CAS  Google Scholar 

  10. Chinnaiyan AM, Prasad U, Shankar S et al (2000) Combined effect of tumor necrosis factor-related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy. Proc Natl Acad Sci USA 97:1754–1759

    Article  PubMed  CAS  Google Scholar 

  11. Frew AJ, Lindemann RK, Martin BP et al (2008) Combination therapy of established cancer using a histone deacetylase inhibitor and a TRAIL receptor agonist. Proc Natl Acad Sci USA 105:11317–11322

    Article  PubMed  CAS  Google Scholar 

  12. Palacios C, Yerbes R, Lopez-Rivas A (2006) Flavopiridol induces cellular FLICE-inhibitory protein degradation by the proteasome and promotes TRAIL-induced early signaling and apoptosis in breast tumor cells. Cancer Res 66:8858–8869

    Article  PubMed  CAS  Google Scholar 

  13. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529

    Article  PubMed  CAS  Google Scholar 

  14. Moenner M, Pluquet O, Bouchecareilh M, Chevet E (2007) Integrated endoplasmic reticulum stress responses in cancer. Cancer Res 67:10631–10634

    Article  PubMed  CAS  Google Scholar 

  15. He Q, Lee DI, Rong R et al (2002) Endoplasmic reticulum calcium pool depletion-induced apoptosis is coupled with activation of the death receptor 5 pathway. Oncogene 21:2623–2633

    Article  PubMed  CAS  Google Scholar 

  16. Yamaguchi H, Wang HG (2004) CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. J Biol Chem 279:45495–45502

    Article  PubMed  CAS  Google Scholar 

  17. Burikhanov R, Zhao Y, Goswami A, Qiu S, Schwarze SR, Rangnekar VM (2009) The tumor suppressor Par-4 activates an extrinsic pathway for apoptosis. Cell 138:377–388

    Article  PubMed  CAS  Google Scholar 

  18. Shiraishi T, Yoshida T, Nakata S et al (2005) Tunicamycin enhances tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human prostate cancer cells. Cancer Res 65:6364–6370

    Article  PubMed  CAS  Google Scholar 

  19. Jiang CC, Chen LH, Gillespie S et al (2007) Tunicamycin sensitizes human melanoma cells to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by up-regulation of TRAIL-R2 via the unfolded protein response. Cancer Res 67:5880–5888

    Article  PubMed  CAS  Google Scholar 

  20. Liu H, Jiang CC, Lavis CJ et al (2009) 2-Deoxy-d-glucose enhances TRAIL-induced apoptosis in human melanoma cells through XBP-1-mediated up-regulation of TRAIL-R2. Mol Cancer 8:122

    Article  PubMed  Google Scholar 

  21. Harper N, Hughes MA, Farrow SN, Cohen GM, MacFarlane M (2003) Protein kinase C modulates tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by targeting the apical events of death receptor signaling. J Biol Chem 278:44338–44347

    Article  PubMed  CAS  Google Scholar 

  22. Sanchez-Perez T, Ortiz-Ferron G, Lopez-Rivas A (2010) Mitotic arrest and JNK-induced proteasomal degradation of FLIP and Mcl-1 are key events in the sensitization of breast tumor cells to TRAIL by antimicrotubule agents. Cell Death Differ 17:883–894

    Article  PubMed  CAS  Google Scholar 

  23. Hirota M, Kitagaki M, Itagaki H, Aiba S (2006) Quantitative measurement of spliced XBP1 mRNA as an indicator of endoplasmic reticulum stress. J Toxicol Sci 31:149–156

    Article  PubMed  CAS  Google Scholar 

  24. Gong J, Traganos F, Darzynkiewicz Z (1994) A selective procedure for DNA extraction from apoptotic cells applicable for gel electrophoresis and flow cytometry. Anal Biochem 218:314–319

    Article  PubMed  CAS  Google Scholar 

  25. Walczak H, Bouchon A, Stahl H, Krammer PH (2000) Tumor necrosis factor-related apoptosis-inducing ligand retains its apoptosis-inducing capacity on Bcl-2- or Bcl-xL-overexpressing chemotherapy-resistant tumor cells. Cancer Res 60:3051–3057

    PubMed  CAS  Google Scholar 

  26. Ruiz de Almodovar C, Ruiz-Ruiz C, Munoz-Pinedo C, Robledo G, Lopez-Rivas A (2001) The differential sensitivity of Bc1-2-overexpressing human breast tumor cells to TRAIL or doxorubicin-induced apoptosis is dependent on Bc1-2 protein levels. Oncogene 20:7128–7133

    Article  PubMed  CAS  Google Scholar 

  27. Jin Z, McDonald ER 3rd, Dicker DT, El-Deiry WS (2004) Deficient tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor transport to the cell surface in human colon cancer cells selected for resistance to TRAIL-induced apoptosis. J Biol Chem 279:35829–35839

    Article  PubMed  CAS  Google Scholar 

  28. Kischkel FC, Lawrence DA, Chuntharapai A, Schow P, Kim KJ, Ashkenazi A (2000) Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 12:611–620

    Article  PubMed  CAS  Google Scholar 

  29. Ubeda M, Wang XZ, Zinszner H, Wu I, Habener JF, Ron D (1996) Stress-induced binding of the transcriptional factor CHOP to a novel DNA control element. Mol Cell Biol 16:1479–1489

    PubMed  CAS  Google Scholar 

  30. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2:326–332

    Article  PubMed  CAS  Google Scholar 

  31. Kozutsumi Y, Segal M, Normington K, Gething MJ, Sambrook J (1988) The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332:462–464

    Article  PubMed  CAS  Google Scholar 

  32. Rao RV, Ellerby HM, Bredesen DE (2004) Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ 11:372–380

    Article  PubMed  CAS  Google Scholar 

  33. Zinszner H, Kuroda M, Wang X et al (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 12:982–995

    Article  PubMed  CAS  Google Scholar 

  34. Masud A, Mohapatra A, Lakhani SA, Ferrandino A, Hakem R, Flavell RA (2007) Endoplasmic reticulum stress-induced death of mouse embryonic fibroblasts requires the intrinsic pathway of apoptosis. J Biol Chem 282:14132–14139

    Article  PubMed  CAS  Google Scholar 

  35. Zou W, Yue P, Khuri FR, Sun SY (2008) Coupling of endoplasmic reticulum stress to CDDO-Me-induced up-regulation of death receptor 5 via a CHOP-dependent mechanism involving JNK activation. Cancer Res 68:7484–7492

    Article  PubMed  CAS  Google Scholar 

  36. Calfon M, Zeng H, Urano F et al (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415:92–96

    Article  PubMed  CAS  Google Scholar 

  37. Harding HP, Zhang Y, Zeng H et al (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11:619–633

    Article  PubMed  CAS  Google Scholar 

  38. DuRose JB, Tam AB, Niwa M (2006) Intrinsic capacities of molecular sensors of the unfolded protein response to sense alternate forms of endoplasmic reticulum stress. Mol Biol Cell 17:3095–3107

    Article  PubMed  CAS  Google Scholar 

  39. Hetz C, Glimcher LH (2009) Fine-tuning of the unfolded protein response: assembling the IRE1alpha interactome. Mol Cell 35:551–561

    Article  PubMed  CAS  Google Scholar 

  40. Meng XW, Lee SH, Dai H et al (2007) Mcl-1 as a buffer for proapoptotic Bcl-2 family members during TRAIL-induced apoptosis: a mechanistic basis for sorafenib (Bay 43-9006)-induced TRAIL sensitization. J Biol Chem 282:29831–29846

    Article  PubMed  CAS  Google Scholar 

  41. Ricci MS, Kim SH, Ogi K et al (2007) Reduction of TRAIL-induced Mcl-1 and cIAP2 by c-Myc or sorafenib sensitizes resistant human cancer cells to TRAIL-induced death. Cancer Cell 12:66–80

    Article  PubMed  CAS  Google Scholar 

  42. Hietakangas V, Poukkula M, Heiskanen KM, Karvinen JT, Sistonen L, Eriksson JE (2003) Erythroid differentiation sensitizes K562 leukemia cells to TRAIL-induced apoptosis by downregulation of c-FLIP. Mol Cell Biol 23:1278–1291

    Article  PubMed  CAS  Google Scholar 

  43. Kim Y, Suh N, Sporn M, Reed JC (2002) An inducible pathway for degradation of FLIP protein sensitizes tumor cells to TRAIL-induced apoptosis. J Biol Chem 277:22320–22329

    Article  PubMed  CAS  Google Scholar 

  44. Nijhawan D, Fang M, Traer E et al (2003) Elimination of Mcl-1 is required for the initiation of apoptosis following ultraviolet irradiation. Genes Dev 17:1475–1486

    Article  PubMed  CAS  Google Scholar 

  45. Poukkula M, Kaunisto A, Hietakangas V et al (2005) Rapid turnover of c-FLIPshort is determined by its unique C-terminal tail. J Biol Chem 280:27345–27355

    Article  PubMed  CAS  Google Scholar 

  46. Chang L, Kamata H, Solinas G et al (2006) The E3 ubiquitin ligase itch couples JNK activation to TNFalpha-induced cell death by inducing c-FLIP(L) turnover. Cell 124:601–613

    Article  PubMed  CAS  Google Scholar 

  47. Urano F, Wang X, Bertolotti A et al (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287:664–666

    Article  PubMed  CAS  Google Scholar 

  48. Tiwary R, Yu W, Li J, Park SK, Sanders BG, Kline K (2010) Role of endoplasmic reticulum stress in alpha-TEA mediated TRAIL/DR5 death receptor dependent apoptosis. PLoS One 5:e11865

    Article  PubMed  Google Scholar 

  49. Opferman JT (2006) Unraveling MCL-1 degradation. Cell Death Differ 13:1260–1262

    Article  PubMed  CAS  Google Scholar 

  50. Inoshita S, Takeda K, Hatai T et al (2002) Phosphorylation and inactivation of myeloid cell leukemia 1 by JNK in response to oxidative stress. J Biol Chem 277:43730–43734

    Article  PubMed  CAS  Google Scholar 

  51. Zhong Q, Gao W, Du F, Wang X (2005) Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell 121:1085–1095

    Article  PubMed  CAS  Google Scholar 

  52. Papandreou I, Denko NC, Olson M et al (2011) Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood 117:1311–1314

    Article  PubMed  CAS  Google Scholar 

  53. Misra UK, Deedwania R, Pizzo SV (2006) Activation and cross-talk between Akt, NF-kappaB, and unfolded protein response signaling in 1-LN prostate cancer cells consequent to ligation of cell surface-associated GRP78. J Biol Chem 281:13694–13707

    Article  PubMed  CAS  Google Scholar 

  54. Walczak H, Miller RE, Ariail K et al (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5:157–163

    Article  PubMed  CAS  Google Scholar 

  55. Ashkenazi A, Pai RC, Fong S et al (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 104:155–162

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank C. Palacios, R. Yerbes, T. Sánchez-Pérez and A. Cano for stimulating scientific discussions and feedback. This work was supported by grants from Ministerio de Educación y Ciencia (SAF2006-00633 and SAF2009-07163), Red Temática de Investigación Cooperativa en Cáncer (RTICC: RD06/0020/0068) and Junta de Andalucía (CTS-211 and CVI-4497) (to AL-R) and NIH (RO1GM087415) and American Cancer Society (RSG-10-027-01-CSM) (to M.N.). RMP was supported by a contract from Instituto de Salud Carlos III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abelardo López-Rivas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martín-Pérez, R., Niwa, M. & López-Rivas, A. ER stress sensitizes cells to TRAIL through down-regulation of FLIP and Mcl-1 and PERK-dependent up-regulation of TRAIL-R2. Apoptosis 17, 349–363 (2012). https://doi.org/10.1007/s10495-011-0673-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-011-0673-2

Keywords

Navigation