Skip to main content
Log in

Perturbation of intracellular K+ homeostasis with valinomycin promotes cell death by mitochondrial swelling and autophagic processes

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Perturbation of cellular K+ homeostasis is a common motif in apoptosis but it is unknown whether a decrease in intracellular K+ alone is sufficient to replicate apoptotic hallmarks. We investigated, which mode of cell death is induced by decreasing the intracellular K+ concentration using valinomycin, a highly K+-selective ionophore. Valinomycin treatment induced mitochondrial swelling and minor nuclear changes in cell lines (BV-2, C6, HEK 293), and in primary mouse microglia and astrocytes. In the microglial cell line BV-2, we identified and quantified three phenotypes in valinomycin-exposed cells. The first and most prevalent phenotype (62 ± 2%) was characterized by swollen mitochondria and no chromatin condensation, and the second (25 ± 3%) by swollen mitochondria and slight chromatin condensation. Only the third phenotype (11 ± 4%) fulfilled criteria of apoptosis by having normal-sized mitochondria and strongly condensed chromatin. Valinomycin-induced swelling of mitochondria was not altered by the adenine nucleotide translocase inhibitor bongkrekic acid (BA), the pan caspase inhibitor Z-VAD-FMK, changing extracellular K+ or Cl concentrations, or the membrane-permeable Ca2+ chelator BAPTA-AM. Only co-exposure of cells to valinomycin and the Ca2+ ionophore ionomycin in high K+ Cl-free extracellular solution suppressed mitochondrial swelling. Ionomycin alone caused shrinkage of mitochondria. Additionally, valinomycin promoted autophagic processes, which were further enhanced by preincubation with BA or with Z-VAD-FMK. Valinomycin-dependent chromatin condensation was inhibited by BA, Z-VAD-FMK, BAPTA-AM, and ionomycin. Our findings demonstrate that mitochondrial swelling and autophagy are common features of valinomycin-exposed cells. Accordingly, valinomycin promotes an autophagic cell death mode, but not apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bortner CD, Hughes FM Jr, Cidlowski JA (1997) A primary role for K+ and Na+ efflux in the activation of apoptosis. J Biol Chem 272:32436–32442

    Article  PubMed  CAS  Google Scholar 

  2. McCarthy JV, Cotter TG (1997) Cell shrinkage and apoptosis: a role for potassium and sodium ion efflux. Cell Death Differ 4:756–770

    Article  PubMed  CAS  Google Scholar 

  3. Schneider J, Nicolay JP, Foller M, Wieder T, Lang F (2007) Suicidal erythrocyte death following cellular K+ loss. Cell Physiol Biochem 20:35–44

    Article  PubMed  CAS  Google Scholar 

  4. Storey NM, Gomez-Angelats M, Bortner CD, Armstrong DL, Cidlowski JA (2003) Stimulation of Kv1.3 potassium channels by death receptors during apoptosis in Jurkat T lymphocytes. J Biol Chem 278:33319–33326

    Article  PubMed  CAS  Google Scholar 

  5. Wang S, Wang JA, Li J, Zhou J, Wang H (2008) Voltage-dependent potassium channels are involved in staurosporine-induced apoptosis of rat mesenchymal stem cells. Cell Biol Int 32:312–319

    PubMed  CAS  Google Scholar 

  6. Yu SP (2003) Regulation and critical role of potassium homeostasis in apoptosis. Prog Neurobiol 70:363–386

    Article  PubMed  CAS  Google Scholar 

  7. Yu SP, Choi DW (2000) Ions, cell volume, and apoptosis. Proc Natl Acad Sci USA 97:9360–9362

    Article  PubMed  CAS  Google Scholar 

  8. Hughes FM Jr, Bortner CD, Purdy GD, Cidlowski JA (1997) Intracellular K+ suppresses the activation of apoptosis in lymphocytes. J Biol Chem 272:30567–30576

    Article  PubMed  CAS  Google Scholar 

  9. Maeno E, Ishizaki Y, Kanaseki T, Hazama A, Okada Y (2000) Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc Natl Acad Sci USA 97:9487–9492

    Article  PubMed  CAS  Google Scholar 

  10. Waldegger S, Steuer S, Risler T et al (1998) Mechanisms and clinical significance of cell volume regulation. Nephrol Dial Transplant 13:867–874

    Article  PubMed  CAS  Google Scholar 

  11. Bortner CD, Cidlowski JA (1999) Caspase independent/dependent regulation of K(+), cell shrinkage, and mitochondrial membrane potential during lymphocyte apoptosis. J Biol Chem 274:21953–21962

    Article  PubMed  CAS  Google Scholar 

  12. Bortner CD, Cidlowski JA (2004) The role of apoptotic volume decrease and ionic homeostasis in the activation and repression of apoptosis. Pflugers Arch 448:313–318

    Article  PubMed  CAS  Google Scholar 

  13. Vu CC, Bortner CD, Cidlowski JA (2001) Differential involvement of initiator caspases in apoptotic volume decrease and potassium efflux during Fas- and UV-induced cell death. J Biol Chem 276:37602–37611

    Article  PubMed  CAS  Google Scholar 

  14. Platoshyn O, Zhang S, McDaniel SS, Yuan JX (2002) Cytochrome c activates K+ channels before inducing apoptosis. Am J Physiol Cell Physiol 283:C1298–C1305

    PubMed  CAS  Google Scholar 

  15. Galluzzi L, Maiuri MC, Vitale I et al (2007) Cell death modalities: classification and pathophysiological implications. Cell Death Differ 14:1237–1243

    Article  PubMed  CAS  Google Scholar 

  16. Kroemer G, Galluzzi L, Vandenabeele P et al (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16:3–11

    Article  PubMed  CAS  Google Scholar 

  17. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11:700–714

    Article  PubMed  CAS  Google Scholar 

  18. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741–752

    Article  PubMed  CAS  Google Scholar 

  19. Marino G, Madeo F, Kroemer G (2011) Autophagy for tissue homeostasis and neuroprotection. Curr Opin Cell Biol 23:198–206

    Article  PubMed  CAS  Google Scholar 

  20. Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469:323–335

    Article  PubMed  CAS  Google Scholar 

  21. Tosteson DC, Cook P, Andreoli T, Tieffenberg M (1967) The effect of valinomycin on potassium and sodium permeability of HK and LK sheep red cells. J Gen Physiol 50:2513–2525

    Article  PubMed  CAS  Google Scholar 

  22. Allbritton NL, Verret CR, Wolley RC, Eisen HN (1988) Calcium ion concentrations and DNA fragmentation in target cell destruction by murine cloned cytotoxic T lymphocytes. J Exp Med 167:514–527

    Article  PubMed  CAS  Google Scholar 

  23. Paananen A, Mikkola R, Sareneva T et al (2000) Inhibition of human NK cell function by valinomycin, a toxin from Streptomyces griseus in indoor air. Infect Immun 68:165–169

    Article  PubMed  CAS  Google Scholar 

  24. Cahalan MD, Chandy KG (2009) The functional network of ion channels in T lymphocytes. Immunol Rev 231:59–87

    Article  PubMed  CAS  Google Scholar 

  25. Kerschbaum HH, Negulescu PA, Cahalan MD (1997) Ion channels, Ca2+ signaling, and reporter gene expression in antigen-specific mouse T cells. J Immunol 159:1628–1638

    PubMed  CAS  Google Scholar 

  26. Abdalah R, Wei L, Francis K, Yu SP (2006) Valinomycin-induced apoptosis in Chinese hamster ovary cells. Neurosci Lett 405:68–73

    Article  PubMed  CAS  Google Scholar 

  27. Deckers CL, Lyons AB, Samuel K, Sanderson A, Maddy AH (1993) Alternative pathways of apoptosis induced by methylprednisolone and valinomycin analyzed by flow cytometry. Exp Cell Res 208:362–370

    Article  PubMed  CAS  Google Scholar 

  28. Duke RC, Witter RZ, Nash PB, Young JD, Ojcius DM (1994) Cytolysis mediated by ionophores and pore-forming agents: role of intracellular calcium in apoptosis. FASEB J 8:237–246

    PubMed  CAS  Google Scholar 

  29. Inai Y, Yabuki M, Kanno T, Akiyama J, Yasuda T, Utsumi K (1997) Valinomycin induces apoptosis of ascites hepatoma cells (AH-130) in relation to mitochondrial membrane potential. Cell Struct Funct 22:555–563

    Article  PubMed  CAS  Google Scholar 

  30. Ojcius DM, Zychlinsky A, Zheng LM, Young JD (1991) Ionophore-induced apoptosis: role of DNA fragmentation and calcium fluxes. Exp Cell Res 197:43–49

    Article  PubMed  CAS  Google Scholar 

  31. Yu SP, Yeh CH, Sensi SL et al (1997) Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 278:114–117

    Article  PubMed  CAS  Google Scholar 

  32. Blasi E, Barluzzi R, Bocchini V, Mazzolla R, Bistoni F (1990) Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J Neuroimmunol 27:229–237

    Article  PubMed  CAS  Google Scholar 

  33. Frei K, Bodmer S, Schwerdel C, Fontana A (1986) Astrocyte-derived interleukin 3 as a growth factor for microglia cells and peritoneal macrophages. J Immunol 137(11):3521–3527

    Google Scholar 

  34. Giulian D, Baker TJ (1986) Characterization of ameboid microglia isolated from developing mammalian brain. J Neurosci 6(8):2163–2178

    Google Scholar 

  35. Wang L, Li T, Lu L (2003) UV-induced corneal epithelial cell death by activation of potassium channels. Invest Ophthalmol Vis Sci 44:5095–5101

    Article  PubMed  Google Scholar 

  36. Friis MB, Friborg CR, Schneider L et al (2005) Cell shrinkage as a signal to apoptosis in NIH 3T3 fibroblasts. J Physiol 567:427–443

    Article  PubMed  CAS  Google Scholar 

  37. Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146:3–15

    PubMed  CAS  Google Scholar 

  38. Svoboda N, Pruetting S, Grissmer S, Kerschbaum HH (2009) cAMP-dependent chloride conductance evokes ammonia-induced blebbing in the microglial cell line, BV-2. Cell Physiol Biochem 24:53–64

    Article  PubMed  CAS  Google Scholar 

  39. Eisenhut M, Wallace H (2011) Ion channels in inflammation. Pflugers Arch 461:401–421

    Article  PubMed  CAS  Google Scholar 

  40. Nguyen W, Howard BL, Neale DS et al (2010) Use of Kv1.3 blockers for inflammatory skin conditions. Curr Med Chem 17:2882–2896

    Article  PubMed  CAS  Google Scholar 

  41. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    Article  PubMed  CAS  Google Scholar 

  42. Tsujimoto Y, Shimizu S (2007) Role of the mitochondrial membrane permeability transition in cell death. Apoptosis 12:835–840

    Article  PubMed  CAS  Google Scholar 

  43. Gogvadze V, Robertson JD, Enoksson M, Zhivotovsky B, Orrenius S (2004) Mitochondrial cytochrome c release may occur by volume-dependent mechanisms not involving permeability transition. Biochem J 378:213–217

    Article  PubMed  CAS  Google Scholar 

  44. Lofrumento DD, La Piana G, Abbrescia DI et al. (2011) Valinomycin induced energy-dependent mitochondrial swelling, cytochrome c release, cytosolic NADH/cytochrome c oxidation and apoptosis. Apoptosis. doi:10.1007/s10495-011-0628-7

  45. Krick S, Platoshyn O, McDaniel SS, Rubin LJ, Yuan JX (2001) Augmented K(+) currents and mitochondrial membrane depolarization in pulmonary artery myocyte apoptosis. Am J Physiol Lung Cell Mol Physiol 281:L887–L894

    PubMed  CAS  Google Scholar 

  46. O’Rourke B (2007) Mitochondrial ion channels. Annu Rev Physiol 69:19–49

    Article  PubMed  Google Scholar 

  47. Nowikovsky K, Schweyen RJ, Bernardi P (2009) Pathophysiology of mitochondrial volume homeostasis: potassium transport and permeability transition. Biochim Biophys Acta 1787:345–350

    Article  PubMed  CAS  Google Scholar 

  48. Lehninger AL (1962) Water uptake and extrusion by mitochondria in relation to oxidative phosphorylation. Physiol Rev 42:467–517

    PubMed  CAS  Google Scholar 

  49. Grimm S, Brdiczka D (2007) The permeability transition pore in cell death. Apoptosis 12:841–855

    Article  PubMed  CAS  Google Scholar 

  50. Kim I, Rodriguez-Enriquez S, Lemasters JJ (2007) Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462:245–253

    Article  PubMed  CAS  Google Scholar 

  51. Tolkovsky AM (2009) Mitophagy. Biochim Biophys Acta 1793:1508–1515

    Article  PubMed  CAS  Google Scholar 

  52. Casas J, Gijon MA, Vigo AG, Crespo MS, Balsinde J, Balboa MA (2006) Overexpression of cytosolic group IVA phospholipase A2 protects cells from Ca2+ -dependent death. J Biol Chem 281:6106–6116

    Article  PubMed  CAS  Google Scholar 

  53. Wyllie AH, Kerr JF, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306

    Article  PubMed  CAS  Google Scholar 

  54. Grinstein S, Dupre A, Rothstein A (1982) Volume regulation by human lymphocytes. Role of calcium. J Gen Physiol 79:849–868

    Article  PubMed  CAS  Google Scholar 

  55. Knauf PA, Fuhrmann GF, Rothstein S, Rothstein A (1977) The relationship between anion exchange and net anion flow across the human red blood cell membrane. J Gen Physiol 69:363–386

    Article  PubMed  CAS  Google Scholar 

  56. Arrazola A, Rota R, Hannaert P, Soler A, Garay RP (1993) Cell volume regulation in rat thymocytes. J Physiol 465:403–414

    PubMed  CAS  Google Scholar 

  57. Eder C (1998) Ion channels in microglia (brain macrophages). Am J Physiol 275:C327–C342

    PubMed  CAS  Google Scholar 

  58. Furtner T, Zierler S, Kerschbaum HH (2007) Blockade of chloride channels suppresses engulfment of microspheres in the microglial cell line, BV-2. Brain Res 1184:1–9

    Article  PubMed  CAS  Google Scholar 

  59. Zierler S, Frei E, Grissmer S, Kerschbaum HH (2008) Chloride influx provokes lamellipodium formation in microglial cells. Cell Physiol Biochem 21:55–62

    Article  PubMed  CAS  Google Scholar 

  60. Zierler S, Kerschbaum HH (2005) Blockade of chloride conductance antagonizes PMA-induced ramification in the murine microglial cell line, BV-2. Brain Res 1039:162–170

    Article  PubMed  CAS  Google Scholar 

  61. Bortner CD, Cidlowski JA (2003) Uncoupling cell shrinkage from apoptosis reveals that Na+ influx is required for volume loss during programmed cell death. J Biol Chem 278:39176–39184

    Article  PubMed  CAS  Google Scholar 

  62. Edinger AL, Thompson CB (2004) Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16:663–669

    Article  PubMed  CAS  Google Scholar 

  63. Loos B, Engelbrecht AM (2009) Cell death: a dynamic response concept. Autophagy 5:590–603

    Article  PubMed  CAS  Google Scholar 

  64. Boya P, Kroemer G (2008) Lysosomal membrane permeabilization in cell death. Oncogene 27:6434–6451

    Article  PubMed  CAS  Google Scholar 

  65. Yuan J, Kroemer G (2010) Alternative cell death mechanisms in development and beyond. Genes Dev 24:2592–2602

    Article  PubMed  CAS  Google Scholar 

  66. Tanaka J, Maeda N (1996) Microglial ramification requires nondiffusible factors derived from astrocytes. Exp Neurol 137:367–375

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank our colleagues Hannelore Bauer and Sebastian Töpfer for generously providing us with HEK 293 cells, and Anton Hermann and Thomas Weiger for C6 cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubert H. Kerschbaum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, B., Wörndl, K., Lütz-Meindl, U. et al. Perturbation of intracellular K+ homeostasis with valinomycin promotes cell death by mitochondrial swelling and autophagic processes. Apoptosis 16, 1101–1117 (2011). https://doi.org/10.1007/s10495-011-0642-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-011-0642-9

Keywords

Navigation