Skip to main content
Log in

Insulin-like growth factor-1 receptor activation prevents hydrogen peroxide-induced oxidative stress, mitochondrial dysfunction and apoptosis

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Vascular disease is the leading cause of morbidity and mortality. Oxidative stress can cause endothelial cell apoptosis. Low insulin like growth factor-1 (IGF-1) has been linked to adverse risk profile and increased vascular disease incidence. Since IGF-1 acts as an important survival factor for multiple cell types, we undertook this study to investigate whether IGF-1 favorably affects oxidative-stress mediated apoptosis of vascular endothelial cells. Exposure to hydrogen peroxide induced apoptotic changes (e.g. DNA fragmentation, altered mitochondrial membrane potential and caspase-3 activity) in human umbilical vein endothelial cells (HUVECs) in a time dependent manner. Addition of IGF-1 blocked the oxidative-stress effect parallel to IGF-1 receptor (IGF-1R) expression, and silencing the IGF-1R with small interference RNA attenuated the IGF-1 influence. Our findings show that enhanced IGF-1 signaling inhibits oxidative-stress induced apoptosis in HUVECs by reducing mitochondrial dysfunction. Specifically the protective mechanism of IGF-1 involves preserving the mitochondrial membrane potential, maintaining the mitochondrial retention of cytochrome-c, and reducing caspase-3 activity. These results may have therapeutic implications in preventing/reducing vascular disease associated endothelial dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barbieri SS, Eligini S, Brambilla M, Tremoli E, Colli S (2003) Reactive oxygen species mediate cyclooxygenase-2 induction during monocyte to macrophage differentiation: critical role of NADPH oxidase. Cardiovasc Res 60:187–197

    Article  PubMed  CAS  Google Scholar 

  2. Meng X, Li ZM, Zhou YJ, Cao YL, Zhang J (2008) Effect of the antioxidant alpha-lipoic acid on apoptosis in human umbilical vein endothelial cells induced by high glucose. Clin Exp Med 8:43–49

    Article  PubMed  CAS  Google Scholar 

  3. Nakao-Hayashi J, Ito H, Kanayasu T, Morita I, Murota S (1992) Stimulatory effects of insulin and insulin-like growth factor I on migration and tube formation by vascular endothelial cells. Atherosclerosis 92:141–149

    Article  PubMed  CAS  Google Scholar 

  4. Yoon YS, Uchida S, Masuo O, Cejna M, Park JS, Gwon HC, Kirchmair R, Bahlman F, Walter D, Curry C, Hanley A, Isner JM, Losordo DW (2005) Progressive attenuation of myocardial vascular endothelial growth factor expression is a seminal event in diabetic cardiomyopathy: restoration of microvascular homeostasis and recovery of cardiac function in diabetic cardiomyopathy after replenishment of local vascular endothelial growth factor. Circulation 111:2073–2085

    Article  PubMed  CAS  Google Scholar 

  5. Yu T, Robotham JL, Yoon Y (2006) Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci USA 103:2653–2658

    Article  PubMed  CAS  Google Scholar 

  6. Yu T, Sheu SS, Robotham JL, Yoon Y (2008) Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovasc Res 79:341–351

    Article  PubMed  CAS  Google Scholar 

  7. Chen YH, Lin SJ, Lin FY, Wu TC, Tsao CR, Huang PH, Liu PL, Chen YL, Chen JW (2007) High glucose impairs early and late endothelial progenitor cells by modifying nitric oxide-related but not oxidative stress-mediated mechanisms. Diabetes 56:1559–1568

    Article  PubMed  CAS  Google Scholar 

  8. Ding H, Hashem M, Triggle C (2007) Increased oxidative stress in the streptozotocin-induced diabetic apoE-deficient mouse: changes in expression of NADPH oxidase subunits and eNOS. Eur J Pharmacol 561:121–128

    Article  PubMed  CAS  Google Scholar 

  9. Hyun DH, Hunt ND, Emerson SS, Hernandez JO, Mattson MP, de Cabo R (2007) Up-regulation of plasma membrane-associated redox activities in neuronal cells lacking functional mitochondria. J Neurochem 100:1364–1374

    Article  PubMed  CAS  Google Scholar 

  10. Melov S (2000) Mitochondrial oxidative stress. Physiologic consequences and potential for a role in aging. Ann N Y Acad Sci 908:219–225

    Article  PubMed  CAS  Google Scholar 

  11. Suda O, Tsutsui M, Morishita T, Tanimoto A, Horiuchi M, Tasaki H, Huang PL, Sasaguri Y, Yanagihara N, Nakashima Y (2002) Long-term treatment with N(omega)-nitro-l-arginine methyl ester causes arteriosclerotic coronary lesions in endothelial nitric oxide synthase-deficient mice. Circulation 106:1729–1735

    Article  PubMed  CAS  Google Scholar 

  12. Beal MF (1998) Mitochondrial dysfunction in neurodegenerative diseases. Biochim Biophys Acta 1366:211–223

    Article  PubMed  CAS  Google Scholar 

  13. Lemasters JJ, Nieminen AL, Qian T, Trost LC, Herman B (1997) The mitochondrial permeability transition in toxic, hypoxic and reperfusion injury. Mol Cell Biochem 174:159–165

    Article  PubMed  CAS  Google Scholar 

  14. Li Y, Wu H, Khardori R, Song YH, Lu YW, Geng YJ (2009) Insulin-like growth factor-1 receptor activation prevents high glucose-induced mitochondrial dysfunction, cytochrome-c release and apoptosis. Biochem Biophys Res Commun 384:259–264

    Article  PubMed  CAS  Google Scholar 

  15. Satoh T, Enokido Y, Aoshima H, Uchiyama Y, Hatanaka H (1997) Changes in mitochondrial membrane potential during oxidative stress-induced apoptosis in PC12 cells. J Neurosci Res 50:413–420

    Article  PubMed  CAS  Google Scholar 

  16. Li Y, Meyer EM, Walker DW, Millard WJ, He YJ, King MA (2002) Alpha7 nicotinic receptor activation inhibits ethanol-induced mitochondrial dysfunction, cytochrome c release and neurotoxicity in primary rat hippocampal neuronal cultures. J Neurochem 81:853–858

    Article  PubMed  CAS  Google Scholar 

  17. Reed JC (1997) Cytochrome c: can’t live with it–can’t live without it. Cell 91:559–562

    Article  PubMed  CAS  Google Scholar 

  18. Krajewski S, Krajewska M, Ellerby LM, Welsh K, Xie Z, Deveraux QL, Salvesen GS, Bredesen DE, Rosenthal RE, Fiskum G, Reed JC (1999) Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia. Proc Natl Acad Sci USA 96:5752–5757

    Article  PubMed  CAS  Google Scholar 

  19. Deshmukh M, Johnson EM Jr (1998) Evidence of a novel event during neuronal death: development of competence-to-die in response to cytoplasmic cytochrome c. Neuron 21:695–705

    Article  PubMed  CAS  Google Scholar 

  20. Yang Z, von Ballmoos MW, Faessler D, Voelzmann J, Ortmann J, Diehm N, Kalka-Moll W, Baumgartner I, Di Santo S, Kalka C (2010) Paracrine factors secreted by endothelial progenitor cells prevent oxidative stress-induced apoptosis of mature endothelial cells. Atherosclerosis 211:103–109

    Article  PubMed  CAS  Google Scholar 

  21. Ekman B, Nystrom F, Arnqvist HJ (2000) Circulating IGF-I concentrations are low and not correlated to glycaemic control in adults with type 1 diabetes. Eur J Endocrinol 143:505–510

    Article  PubMed  CAS  Google Scholar 

  22. Li Y, Higashi Y, Itabe H, Song YH, Du J, Delafontaine P (2003) Insulin-like growth factor-1 receptor activation inhibits oxidized LDL-induced cytochrome C release and apoptosis via the phosphatidylinositol 3 kinase/Akt signaling pathway. Arterioscler Thromb Vasc Biol 23:2178–2184

    Article  PubMed  CAS  Google Scholar 

  23. Delafontaine P, Song YH, Li Y (2004) Expression, regulation, and function of IGF-1, IGF-1R, and IGF-1 binding proteins in blood vessels. Arterioscler Thromb Vasc Biol 24:435–444

    Article  PubMed  CAS  Google Scholar 

  24. Gomes A, Fernandes E, Lima JL (2005) Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods 65:45–80

    Article  PubMed  CAS  Google Scholar 

  25. Libby P, Plutzky J (2002) Diabetic macrovascular disease: the glucose paradox? Circulation 106:2760–2763

    Article  PubMed  Google Scholar 

  26. Hink U, Li H, Mollnau H, Oelze M, Matheis E, Hartmann M, Skatchkov M, Thaiss F, Stahl RA, Warnholtz A, Meinertz T, Griendling K, Harrison DG, Forstermann U, Munzel T (2001) Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res 88:E14–E22

    PubMed  CAS  Google Scholar 

  27. Shidoji Y, Nakamura N, Moriwaki H, Muto Y (1997) Rapid loss in the mitochondrial membrane potential during geranylgeranoic acid-induced apoptosis. Biochem Biophys Res Commun 230:58–63

    Article  PubMed  CAS  Google Scholar 

  28. Kruman I, Guo Q, Mattson MP (1998) Calcium and reactive oxygen species mediate staurosporine-induced mitochondrial dysfunction and apoptosis in PC12 cells. J Neurosci Res 51:293–308

    Article  PubMed  CAS  Google Scholar 

  29. Mattson MP, Duan W (1999) “Apoptotic” biochemical cascades in synaptic compartments: roles in adaptive plasticity and neurodegenerative disorders. J Neurosci Res 58:152–166

    Article  PubMed  CAS  Google Scholar 

  30. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129–1132

    Article  PubMed  CAS  Google Scholar 

  31. Garrido R, Mattson MP, Hennig B, Toborek M (2001) Nicotine protects against arachidonic-acid-induced caspase activation, cytochrome c release and apoptosis of cultured spinal cord neurons. J Neurochem 76:1395–1403

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by American Heart Association (0765149Y to Y Li), MacDonald Foundation (10RDM009 and 07RDM008 to Y Li), grants from Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China (09JC1411100) and the National Basic Research Program of China (973 Program, 2009CB521901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangxin Li.

Additional information

The last three authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, CN., Geng, YJ., Li, F. et al. Insulin-like growth factor-1 receptor activation prevents hydrogen peroxide-induced oxidative stress, mitochondrial dysfunction and apoptosis. Apoptosis 16, 1118–1127 (2011). https://doi.org/10.1007/s10495-011-0634-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-011-0634-9

Keywords

Navigation