Skip to main content
Log in

Translocation and oligomerization of Bax is regulated independently by activation of p38 MAPK and caspase-2 during MN9D dopaminergic neurodegeneration

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Bax is translocated into the mitochondrial membrane and oligomerized therein to initiate mitochondrial apoptotic signaling. Our previous study indicated that reactive oxygen species (ROS)-mediated activation of mitogen-activated protein kinase (MAPK) and caspase is critically involved in 6-hydroxydopamine (6-OHDA)-mediated neurodegeneration. Here, we specifically attempted to examine whether and how these death signaling pathways may be linked to Bax translocation and oligomerization. We found that 6-OHDA treatment triggered translocation and oligomerization of Bax onto the mitochondria in MN9D dopaminergic neuronal cells. These events preceded cytochrome c release into the cytosol. Cross-linking assay revealed that co-treatment with a ROS scavenger or a pan-caspase inhibitor inhibited 6-OHDA-induced Bax oligomerization. Among several candidates of ROS-activated MAPKs and caspases, we found that co-treatment with PD169316 or VDVAD specifically inhibited 6-OHDA-induced Bax oligomerization, suggesting critical involvement of p38 MAPK and caspase-2. Consequently, overexpression of a dominant negative form of p38 MAPK or a shRNA-mediated knockdown of caspase-2 indeed inhibited 6-OHDA-induced Bax oligomerization. However, activation of p38 MAPK and caspase-2 was independently linked to oligomerization of Bax. This specificity was largely confirmed with a Bax 6A7 antibody known to detect activated forms of Bax on the mitochondria. Taken together, our data suggest that there is an independent amplification loop of Bax translocation and oligomerization via caspase-2 and p38 MAPK during ROS-mediated dopaminergic neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dawson TM, Dawson VL (2003) Molecular pathways of neurodegeneration in Parkinson’s disease. Science 302(5646):819–822

    Article  PubMed  CAS  Google Scholar 

  2. Hartmann A, Hunot S, Michel PP, Muriel MP, Vyas S, Faucheux BA, Mouatt-Prigent A, Turmel H, Srinivasan A, Ruberg M, Evan GI, Agid Y, Hirsch EC (2000) Caspase-3: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease. Proc Natl Acad Sci USA 97(6):2875–2880

    Article  PubMed  CAS  Google Scholar 

  3. Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Marquez J, Mouatt-Prigent A, Ruberg M, Hirsch EC, Agid Y (1997) Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol 12(1):25–31

    PubMed  CAS  Google Scholar 

  4. Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ (2007) Potential therapeutic applications of autophagy. Nat Rev Drug Discov 6(4):304–312

    Article  PubMed  CAS  Google Scholar 

  5. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909

    Article  PubMed  CAS  Google Scholar 

  6. Vila M, Przedborski S (2004) Genetic clues to the pathogenesis of Parkinson’s disease. Nat Med 10(Suppl):S58–S62

    Article  PubMed  Google Scholar 

  7. Javoy F, Sotelo C, Herbet A, Agid Y (1976) Specificity of dopaminergic neuronal degeneration induced by intracerebral injection of 6-hydroxydopamine in the nigrostriatal dopamine system. Brain Res 102(2):201–215

    Article  PubMed  CAS  Google Scholar 

  8. Irwin I, DeLanney LE, Langston JW (1993) MPTP and aging. Studies in the C57BL/6 mouse. Adv Neurol 60:197–206

    PubMed  CAS  Google Scholar 

  9. Bove J, Prou D, Perier C, Przedborski S (2005) Toxin-induced models of Parkinson’s disease. NeuroRx 2(3):484–494

    Article  PubMed  Google Scholar 

  10. Han BS, Hong HS, Choi WS, Markelonis GJ, Oh TH, Oh YJ (2003) Caspase-dependent and -independent cell death pathways in primary cultures of mesencephalic dopaminergic neurons after neurotoxin treatment. J Neurosci 23(12):5069–5078

    PubMed  CAS  Google Scholar 

  11. Han BS, Noh JS, Gwag BJ, Oh YJ (2003) A distinct death mechanism is induced by 1-methyl-4-phenylpyridinium or by 6-hydroxydopamine in cultured rat cortical neurons: degradation and dephosphorylation of tau. Neurosci Lett 341(2):99–102

    Article  PubMed  CAS  Google Scholar 

  12. Choi WS, Lee E, Lim J, Oh YJ (2008) Calbindin-D28K prevents drug-induced dopaminergic neuronal death by inhibiting caspase and calpain activity. Biochem Biophys Res Commun 371(1):127–131

    Article  PubMed  CAS  Google Scholar 

  13. Lim J, Kim HW, Youdim MB, Rhyu IJ, Choe KM, Oh YJ (2010) Binding preference of p62 towards LC3-ll during dopaminergic neurotoxin-induced impairment of autophagic flux. Autophagy 7(1):51–60

    Article  Google Scholar 

  14. Choi WS, Eom DS, Han BS, Kim WK, Han BH, Choi EJ, Oh TH, Markelonis GJ, Cho JW, Oh YJ (2004) Phosphorylation of p38 MAPK induced by oxidative stress is linked to activation of both caspase-8- and -9-mediated apoptotic pathways in dopaminergic neurons. J Biol Chem 279(19):20451–20460

    Article  PubMed  CAS  Google Scholar 

  15. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275(5303):1129–1132

    Article  PubMed  CAS  Google Scholar 

  16. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275(5303):1132–1136

    Article  PubMed  CAS  Google Scholar 

  17. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281(5381):1312–1316

    Article  PubMed  CAS  Google Scholar 

  18. Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86(1):147–157

    Article  PubMed  CAS  Google Scholar 

  19. Chipuk JE, Green DR (2008) How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 18(4):157–164

    Article  PubMed  CAS  Google Scholar 

  20. Suen DF, Norris KL, Youle RJ (2008) Mitochondrial dynamics and apoptosis. Genes Dev 22(12):1577–1590

    Article  PubMed  CAS  Google Scholar 

  21. Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG, Colman PM, Day CL, Adams JM, Huang DC (2005) Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17(3):393–403

    Article  PubMed  CAS  Google Scholar 

  22. Chipuk JE, Fisher JC, Dillon CP, Kriwacki RW, Kuwana T, Green DR (2008) Mechanism of apoptosis induction by inhibition of the anti-apoptotic BCL-2 proteins. Proc Natl Acad Sci USA 105(51):20327–20332

    Article  PubMed  CAS  Google Scholar 

  23. Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA, Green DR, Newmeyer DD (2005) BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 17(4):525–535

    Article  PubMed  CAS  Google Scholar 

  24. Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ (2002) Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2(3):183–192

    Article  PubMed  CAS  Google Scholar 

  25. Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74(4):609–619

    Article  PubMed  CAS  Google Scholar 

  26. Antonsson B, Montessuit S, Sanchez B, Martinou JC (2001) Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. J Biol Chem 276(15):11615–11623

    Article  PubMed  CAS  Google Scholar 

  27. Wei MC, Lindsten T, Mootha VK, Weiler S, Gross A, Ashiya M, Thompson CB, Korsmeyer SJ (2000) tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev 14(16):2060–2071

    PubMed  CAS  Google Scholar 

  28. Suzuki M, Youle RJ, Tjandra N (2000) Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103(4):645–654

    Article  PubMed  CAS  Google Scholar 

  29. Wolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG, Youle RJ (1997) Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol 139(5):1281–1292

    Article  PubMed  CAS  Google Scholar 

  30. Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M, Schneiter R, Green DR, Newmeyer DD (2002) Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111(3):331–342

    Article  PubMed  CAS  Google Scholar 

  31. Kim H, Tu HC, Ren D, Takeuchi O, Jeffers JR, Zambetti GP, Hsieh JJ, Cheng EH (2009) Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis. Mol Cell 36(3):487–499

    Article  PubMed  CAS  Google Scholar 

  32. Choi HK, Won LA, Kontur PJ, Hammond DN, Fox AP, Wainer BH, Hoffmann PC, Heller A (1991) Immortalization of embryonic mesencephalic dopaminergic neurons by somatic cell fusion. Brain Res 552(1):67–76

    Article  PubMed  CAS  Google Scholar 

  33. Oh YJ, Wong SC, Moffat M, O’Malley KL (1995) Overexpression of Bcl-2 attenuates MPP+, but not 6-ODHA, induced cell death in a dopaminergic neuronal cell line. Neurobiol Dis 2(3):157–167

    Article  PubMed  CAS  Google Scholar 

  34. Choi WS, Lee EH, Chung CW, Jung YK, Jin BK, Kim SU, Oh TH, Saido TC, Oh YJ (2001) Cleavage of Bax is mediated by caspase-dependent or -independent calpain activation in dopaminergic neuronal cells: protective role of Bcl-2. J Neurochem 77(6):1531–1541

    Article  PubMed  CAS  Google Scholar 

  35. Canet-Aviles RM, Wilson MA, Miller DW, Ahmad R, McLendon C, Bandyopadhyay S, Baptista MJ, Ringe D, Petsko GA, Cookson MR (2004) The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci USA 101(24):9103–9108

    Article  PubMed  CAS  Google Scholar 

  36. Linseman DA, Butts BD, Precht TA, Phelps RA, Le SS, Laessig TA, Bouchard RJ, Florez-McClure ML, Heidenreich KA (2004) Glycogen synthase kinase-3beta phosphorylates Bax and promotes its mitochondrial localization during neuronal apoptosis. J Neurosci 24(44):9993–10002

    Article  PubMed  CAS  Google Scholar 

  37. Sundararajan R, Cuconati A, Nelson D, White E (2001) Tumor necrosis factor-alpha induces Bax-Bak interaction and apoptosis, which is inhibited by adenovirus E1B 19K. J Biol Chem 276(48):45120–45127

    Article  PubMed  CAS  Google Scholar 

  38. Makin GW, Corfe BM, Griffiths GJ, Thistlethwaite A, Hickman JA, Dive C (2001) Damage-induced Bax N-terminal change, translocation to mitochondria and formation of Bax dimers/complexes occur regardless of cell fate. EMBO J 20(22):6306–6315

    Article  PubMed  CAS  Google Scholar 

  39. George NM, Evans JJ, Luo X (2007) A three-helix homo-oligomerization domain containing BH3 and BH1 is responsible for the apoptotic activity of Bax. Genes Dev 21(15):1937–1948

    Article  PubMed  CAS  Google Scholar 

  40. Van Laethem A, Van Kelst S, Lippens S, Declercq W, Vandenabeele P, Janssens S, Vandenheede JR, Garmyn M, Agostinis P (2004) Activation of p38 MAPK is required for Bax translocation to mitochondria, cytochrome c release and apoptosis induced by UVB irradiation in human keratinocytes. FASEB J 18(15):1946–1948

    PubMed  Google Scholar 

  41. Yuan ZQ, Feldman RI, Sussman GE, Coppola D, Nicosia SV, Cheng JQ (2003) AKT2 inhibition of cisplatin-induced JNK/p38 and Bax activation by phosphorylation of ASK1: implication of AKT2 in chemoresistance. J Biol Chem 278(26):23432–23440

    Article  PubMed  CAS  Google Scholar 

  42. Deacon K, Mistry P, Chernoff J, Blank JL, Patel R (2003) p38 Mitogen-activated protein kinase mediates cell death and p21-activated kinase mediates cell survival during chemotherapeutic drug-induced mitotic arrest. Mol Biol Cell 14(5):2071–2087

    Article  PubMed  CAS  Google Scholar 

  43. Kim BJ, Ryu SW, Song BJ (2006) JNK- and p38 kinase-mediated phosphorylation of Bax leads to its activation and mitochondrial translocation and to apoptosis of human hepatoma HepG2 cells. J Biol Chem 281(30):21256–21265

    Article  PubMed  CAS  Google Scholar 

  44. Owens TW, Valentijn AJ, Upton JP, Keeble J, Zhang L, Lindsay J, Zouq NK, Gilmore AP (2009) Apoptosis commitment and activation of mitochondrial Bax during anoikis is regulated by p38 MAPK. Cell Death Differ 16(11):1551–1562

    Article  PubMed  CAS  Google Scholar 

  45. Bonzon C, Bouchier-Hayes L, Pagliari LJ, Green DR, Newmeyer DD (2006) Caspase-2-induced apoptosis requires bid cleavage: a physiological role for bid in heat shock-induced death. Mol Biol Cell 17(5):2150–2157

    Article  PubMed  CAS  Google Scholar 

  46. Wagner KW, Engels IH, Deveraux QL (2004) Caspase-2 can function upstream of bid cleavage in the TRAIL apoptosis pathway. J Biol Chem 279(33):35047–35052

    Article  PubMed  CAS  Google Scholar 

  47. Yi X, Yin XM, Dong Z (2003) Inhibition of Bid-induced apoptosis by Bcl-2. tBid insertion, Bax translocation, and Bax/Bak oligomerization suppressed. J Biol Chem 278(19):16992–16999

    Article  PubMed  CAS  Google Scholar 

  48. Eskes R, Desagher S, Antonsson B, Martinou JC (2000) Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol 20(3):929–935

    Article  PubMed  CAS  Google Scholar 

  49. Roucou X, Montessuit S, Antonsson B, Martinou JC (2002) Bax oligomerization in mitochondrial membranes requires tBid (caspase-8-cleaved Bid) and a mitochondrial protein. Biochem J 368(Pt 3):915–921

    Article  PubMed  CAS  Google Scholar 

  50. Grinberg M, Sarig R, Zaltsman Y, Frumkin D, Grammatikakis N, Reuveny E, Gross A (2002) tBID Homooligomerizes in the mitochondrial membrane to induce apoptosis. J Biol Chem 277(14):12237–12245

    Article  PubMed  CAS  Google Scholar 

  51. Kim EK, Choi EJ (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta 1802(4):396–405

    PubMed  CAS  Google Scholar 

  52. Cookson MR, van der Brug M (2008) Cell systems and the toxic mechanism(s) of alpha-synuclein. Exp Neurol 209(1):5–11

    Article  PubMed  CAS  Google Scholar 

  53. Levy OA, Malagelada C, Greene LA (2009) Cell death pathways in Parkinson’s disease: proximal triggers, distal effectors, and final steps. Apoptosis 14(4):478–500

    Article  PubMed  Google Scholar 

  54. Klegeris A, Pelech S, Giasson BI, Maguire J, Zhang H, McGeer EG, McGeer PL (2008) Alpha-synuclein activates stress signaling protein kinases in THP-1 cells and microglia. Neurobiol Aging 29(5):739–752

    Article  PubMed  CAS  Google Scholar 

  55. Karunakaran S, Saeed U, Mishra M, Valli RK, Joshi SD, Meka DP, Seth P, Ravindranath V (2008) Selective activation of p38 mitogen-activated protein kinase in dopaminergic neurons of substantia nigra leads to nuclear translocation of p53 in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice. J Neurosci 28(47):12500–12509

    Article  PubMed  CAS  Google Scholar 

  56. Karunakaran S, Ravindranath V (2009) Activation of p38 MAPK in the substantia nigra leads to nuclear translocation of NF-kappaB in MPTP-treated mice: implication in Parkinson’s disease. J Neurochem 109(6):1791–1799

    Article  PubMed  CAS  Google Scholar 

  57. Choi WS, Yoon SY, Oh TH, Choi EJ, O’Malley KL, Oh YJ (1999) Two distinct mechanisms are involved in 6-hydroxydopamine- and MPP+-induced dopaminergic neuronal cell death: role of caspases, ROS, and JNK. J Neurosci Res 57(1):86–94

    Article  PubMed  CAS  Google Scholar 

  58. Bode AM, Dong Z (2007) The functional contrariety of JNK. Mol Carcinog 46(8):591–598

    Article  PubMed  CAS  Google Scholar 

  59. Kumar S, Kinoshita M, Noda M, Copeland NG, Jenkins NA (1994) Induction of apoptosis by the mouse Nedd2 gene, which encodes a protein similar to the product of the Caenorhabditis elegans cell death gene ced-3 and the mammalian IL-1 beta-converting enzyme. Genes Dev 8(14):1613–1626

    Article  PubMed  CAS  Google Scholar 

  60. Wang L, Miura M, Bergeron L, Zhu H, Yuan J (1994) Ich-1, an Ice/ced-3-related gene, encodes both positive and negative regulators of programmed cell death. Cell 78(5):739–750

    Article  PubMed  CAS  Google Scholar 

  61. Harvey NL, Butt AJ, Kumar S (1997) Functional activation of Nedd2/ICH-1 (caspase-2) is an early process in apoptosis. J Biol Chem 272(20):13134–13139

    Article  PubMed  CAS  Google Scholar 

  62. Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, Wang HG, Reed JC, Nicholson DW, Alnemri ES, Green DR, Martin SJ (1999) Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol 144(2):281–292

    Article  PubMed  CAS  Google Scholar 

  63. Guo Y, Srinivasula SM, Druilhe A, Fernandes-Alnemri T, Alnemri ES (2002) Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J Biol Chem 277(16):13430–13437

    Article  PubMed  CAS  Google Scholar 

  64. Robertson JD, Enoksson M, Suomela M, Zhivotovsky B, Orrenius S (2002) Caspase-2 acts upstream of mitochondria to promote cytochrome c release during etoposide-induced apoptosis. J Biol Chem 277(33):29803–29809

    Article  PubMed  CAS  Google Scholar 

  65. Lassus P, Opitz-Araya X, Lazebnik Y (2002) Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297(5585):1352–1354

    Article  PubMed  CAS  Google Scholar 

  66. He Q, Huang Y, Sheikh MS (2004) Bax deficiency affects caspase-2 activation during ultraviolet radiation-induced apoptosis. Oncogene 23(6):1321–1325

    Article  PubMed  CAS  Google Scholar 

  67. Lin CF, Chen CL, Chang WT, Jan MS, Hsu LJ, Wu RH, Tang MJ, Chang WC, Lin YS (2004) Sequential caspase-2 and caspase-8 activation upstream of mitochondria during ceramideand etoposide-induced apoptosis. J Biol Chem 279(39):40755–40761

    Article  PubMed  CAS  Google Scholar 

  68. Tinel A, Tschopp J (2004) The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science 304(5672):843–846

    Article  PubMed  CAS  Google Scholar 

  69. Baptiste-Okoh N, Barsotti AM, Prives C (2008) A role for caspase 2 and PIDD in the process of p53-mediated apoptosis. Proc Natl Acad Sci USA 105(6):1937–1942

    Article  PubMed  CAS  Google Scholar 

  70. Oh JH, Choi WS, Kim JE, Seo JW, O’Malley KL, Oh YJ (1998) Overexpression of HA-Bax but not Bcl-2 or Bcl-XL attenuates 6-hydroxydopamine-induced neuronal apoptosis. Exp Neurol 154(1):193–198

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of the Korea Healthcare Technology R&D Project from the Ministry for Health, Welfare & Family Affairs (A090063), and in part by a grant from the Ministry of Science and Technology through the Brain Research Center (Infra-2), KOSEF (SRC, R11-20080036-00000-0) and WCU (R33-2008-10014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young J. Oh.

Additional information

Chang-Ki Oh and Baek-Soo Han contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, CK., Han, BS., Choi, WS. et al. Translocation and oligomerization of Bax is regulated independently by activation of p38 MAPK and caspase-2 during MN9D dopaminergic neurodegeneration. Apoptosis 16, 1087–1100 (2011). https://doi.org/10.1007/s10495-011-0627-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-011-0627-8

Keywords

Navigation