Skip to main content

Advertisement

Log in

YAP accelerates Aβ25–35-induced apoptosis through upregulation of Bax expression by interaction with p73

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Accumulation of amyloid-β-peptide (Aβ) in the brain is considered as a pathological hallmark of Alzheimer’s disease (AD). Previous studies show that p73 is vital for mediating the pathogenic process of AD. Yes-associated protein (YAP) has been shown to positively regulate p73 in promoting apoptosis induced by anti-cancer agents. However, the functional role of YAP and potential relationship between YAP and p73 in AD are unknown. In the present study, we found that YAP accelerated apoptosis in response to Aβ25–35 and the nuclear translocation of YAP was involved in cellular signals that regulated the apoptosis. Aβ25–35 induced YAP translocation from cytoplasm to nucleus accompanied with the increased phosphorylation on Y357, resulting in the enhancement of interaction between YAP and p73. Moreover, inhibition of YAP expression by small hairpin RNA (shRNA) suppressed apoptosis induced by Aβ25–35. More importantly, p73-mediated induction of Bax expression and activation were in a YAP-dependent manner. Overexpression of YAP accelerated Bax translocation, upregulated Bax expression and promoted caspase-3 activation. Taken together, our findings first demonstrated that YAP accelerated Aβ-induced apoptosis through nucleus translocation, leading to the induction of Bax expression and activation. Our results provided a potential therapeutic strategy for the treatment of AD through inhibiting YAP/p73/Bax pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185

    Article  PubMed  CAS  Google Scholar 

  2. Selkoe DJ (1999) Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature 399:23–31

    Article  Google Scholar 

  3. Mudher A, Lovestone S (2002) Alzheimer’s disease—do tauists and baptists finally shake hands? Trends Neurosci 25:22–26

    Article  PubMed  CAS  Google Scholar 

  4. Ikonomovic MD, Klunk WE, Abrahamson EE, Mathis CA, Price JC, Tsopelas ND, Lopresti BJ, Ziolko S, Bi WZ, Paljug WR, Debnath ML, Hope CE, Isanski BA, Hamilton RL, DeKosky ST (2008) Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer’s disease. Brain 131:1630–1645

    Article  PubMed  Google Scholar 

  5. Mattson MP (2000) Apoptosis in neurodegenerative disorders. Nat Rev 1:120–129

    Article  CAS  Google Scholar 

  6. Yuan JY, Yankner BA (2000) Apoptosis in the nervous system. Nature 407:802–809

    Article  PubMed  CAS  Google Scholar 

  7. Gupta VB, Hegde ML, Rao KS (2006) Role of protein conformational dynamics and DNA integrity in relevance to neuronal cell death in neurodegeneration. Curr Alzheimer Res 3:297–309

    Article  PubMed  CAS  Google Scholar 

  8. Alvarez AR, Sandoval PC, Leal NR, Castro PU, Kosi KS (2004) Activation of the neuronal c-Abl tyrosine kinase by amyloid-β-peptide and reactive oxygen species. Neurobiol Dis 17:326–336

    Article  PubMed  CAS  Google Scholar 

  9. Cancino GI, Toledo EM, Leal NR, Hernandez DE, Yevenes LF, Inestrosa NC, Alvarez AR (2008) STI571 prevents apoptosis, tau phosphorylation and behavioural impairments induced by Alzheimer’s β-amyloid deposits. Brain 131:2425–2442

    Article  PubMed  Google Scholar 

  10. Laurén J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-β oligomers. Nature 457:1128–1132

    Article  PubMed  Google Scholar 

  11. Ivins KJ, Thornton PL, Rohn TT, Cotman CW (1999) Neuronal apoptosis induced by β-amyloid is mediated by caspase-8. Neurobiol Dis 6:440–449

    Article  PubMed  CAS  Google Scholar 

  12. Butterfield DA (2002) Amyloid β-peptide (1–42)-induced Oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain: a review. Free Radic Res 36(12):1307–1313

    Article  PubMed  CAS  Google Scholar 

  13. Yagi R, Chen LF, Shigesada K, Murakami Y, Ito Y (1999) A WW domain-containing yes-associated protein (YAP) is a novel transcriptional co-activator. EMBO J 18:2551–2562

    Article  PubMed  CAS  Google Scholar 

  14. Sudol M (1994) Yes-associated protein (YAP65) is a proline-rich phosphoprotein that binds to the SH3 domain of the Yes proto-oncogene product. Oncogene 9(8):2145–2152

    PubMed  CAS  Google Scholar 

  15. Li Z, Zhao B, Wang P, Chen F, Dong ZH, Yang HR, Guan KL, Xu YH (2010) Structural insights into the YAP and TEAD complex. Genes Dev 24:235–240

    Article  PubMed  CAS  Google Scholar 

  16. Strano S, Munarriz E, Rossii M, Castagnolii L, Shaul Y, Sacchi A, Oren M, Sudol M, Cesarenii G, Blandino Giovanni (2001) Physical interaction with yes-associated protein enhances p73 transcriptional activity. J Biol Chem 276(18):15164–15173

    Article  PubMed  CAS  Google Scholar 

  17. Vassilev A, Kaneko KJ, Shu HJ, Zhao YM, DePamphilis ML (2001) TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/yes-associated protein localized in the cytoplasm. Genes Dev 15:1229–1241

    Article  PubMed  CAS  Google Scholar 

  18. Komuro A, Nagai M, Navin NE, Sudol M (2003) WW domain-containing protein YAP associates with ErbB-4 and acts as a co-transcriptional activator for the carboxyl-terminal fragment of ErbB-4 that translocates to the nucleus. J Biol Chem 278(35):33334–33341

    Article  PubMed  CAS  Google Scholar 

  19. Cao XW, Pfaff SL, Gage FH (2008) YAP regulates neural progenitor cell number via the TEA domain transcription factor. Genes Dev 22:3320–3334

    Article  PubMed  CAS  Google Scholar 

  20. Hoshino M, Qi ML, Yoshimura N, Miyashita T, Tagawa K, Wada Y, Enokido Y, Marubuchi S, Harjes P, Arai N, Oyanagi K, Blandino G, Sudol M, Rich T, Kanazawa I, Wanker EE, Saitoe M, Okazawa H (2006) Transcriptional repression induces a slowly progressive atypical neuronal death associated with changes of YAP isoforms and p73. J Cell Biol 172:589–604

    Article  PubMed  CAS  Google Scholar 

  21. Kawahara M, Hori T, Chonabayashi K, Oka T, Sudol M, Uchiyama T (2008) Kpm/Lats2 is linked to chemosensitivity of leukemic cells through the stabilization of p73. Blood 112:3856–3866

    Article  PubMed  CAS  Google Scholar 

  22. Basu S, Totty NF, Irwin MS, Sudol M, Downward J (2003) Akt phosphorylates the yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. Mol Cell 11:11–23

    Article  PubMed  CAS  Google Scholar 

  23. Strano S, Monti O, Pediconi N, Baccarini A, Fontemaggi G, Lapi E, Mantovani F, Damalas A, Citro G, Sacchi A, Sal GD, Levrero M, Blandino G (2005) The transcriptional coactivator yes-associated protein drives p73 gene-target specificity in response to DNA damage. Mol Cell 18:447–459

    Article  PubMed  CAS  Google Scholar 

  24. Matallanas D, Romano D, Yee K, Meissl K, Kucerova L, Piazzolla D, Baccarini M, Vass JK, Kolch W, Neill EO (2007) RASSF1A elicits apoptosis through an MST2 pathway directing proapoptotic transcription by the p73 tumor suppressor protein. Mol Cell 27:962–975

    Article  PubMed  CAS  Google Scholar 

  25. Morimoto N, Nagai M, Miyazaki K, Kurata T, Takehisa Y, Ikeda Y, Kamiya T, Okazawa H, Abe K (2009) Progressive decrease in the level of YAPdeltaCs, prosurvival isoforms of YAP, in the spinal cord of transgenic mouse carrying a mutant SOD1 gene. J Neurosci Res 87:928–936

    Article  PubMed  CAS  Google Scholar 

  26. Pietsch EC, Sykes SM, McMahon SB, Murphy ME (2008) The p53 family and programmed cell death. Oncogene 27(50):6507–6521

    Article  PubMed  CAS  Google Scholar 

  27. Levy D, Adamovich Y, Reuven N, Shaul Y (2007) The Yes-associated protein 1 stabilizes p73 by preventing Itch-mediated ubiquitination of p73. Cell Death Differ 14:743–751

    Article  PubMed  CAS  Google Scholar 

  28. Levy D, Adamovich Y, Reuven N, Shaul Y (2008) Yap1 phosphorylation by c-Abl is a critical step in selective activation of proapoptotic genes in response to DNA damage. Mol Cell 29:350–361

    Article  PubMed  CAS  Google Scholar 

  29. Shimodaira H, Yamashita AY, Kolodner RD, Wang YJ, Jean YJ (2002) Interaction of mismatch repair protein PMS2 and the p53-related transcription factor p73 in apoptosis response to cisplatin. Proc Natl Acad Sci USA 100:2420–2425

    Article  Google Scholar 

  30. Terzic IM, Yamashita AY, Shimodaira H, Avdievich E, Hunton IC, Kolodner RD, Edelmann W, Wang YJ, Jean YJ (2008) Apoptotic function of human PMS2 compromised by the nonsynonymous single-nucleotide polymorphic variant R20Q. Proc Natl Acad Sci USA 105:13993–13998

    Article  Google Scholar 

  31. Yuan M, Tomlinson V, Lara R, Holliday D, Chelala C, Harada T, Gangeswaran R, Bishop CM, Smith P, Danovi SA, Pardo O, Crook T, Mein CA, Lemoine NR, Jones LJ, Basu S (2008) Yes-associated protein (YAP) functions as a tumor suppressor in breast. Cell Death Differ 15:1752–1759

    Article  PubMed  CAS  Google Scholar 

  32. Rocco JW, Leong CO, Kuperwasser N, DeYoung MP, Ellisen LW (2006) p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell 9:45–56

    Article  PubMed  CAS  Google Scholar 

  33. Leong CO, Vidnovic N, DeYoung MP, Sgroi D, Ellisen LW (2007) The p63/p73 network mediates chemosensitivity to cisplatin in a biologically defined subset of primary breast cancers. J Clin Invest 117:1370–1380

    Article  PubMed  CAS  Google Scholar 

  34. Krieghoff E, Behrens J, Mayr B (2005) Nucleo-cytoplasmic distribution of β-catenin is regulated by retention. J Cell Sci 119:1453–1463

    Article  Google Scholar 

  35. Zhang YJ, Xing D, Liu L (2009) PUMA promotes Bax translocation by both directly interacting with Bax and by competitive binding to Bcl-XL during UV-induced apoptosis. Mol Biol Cell 20:3077–3087

    Article  PubMed  CAS  Google Scholar 

  36. Zhang L, Xing D, Chen MJ (2008) BimL displacing Bcl-XL promotes Bax translocation during TNFa-induced apoptosis. Apoptosis 13:950–958

    Article  PubMed  CAS  Google Scholar 

  37. Valentijn AJ, Metcalfe AD, Kott J, Streuli CH, Gilmore AP (2003) Spatial and temporal changes in Bax subcellular localization during anoikis. J Cell Biol 162:599–612

    Article  PubMed  CAS  Google Scholar 

  38. Wei WL, Norton DD, Wang XT, Kusiak JW (2002) Aβ17–42 in Alzheimer’s disease activates JNK and caspase-8 leading to neuronal apoptosis. Brain 125:2036–2043

    Article  PubMed  Google Scholar 

  39. Zhao L, Qian ZM, Zhang C, Yung WH, Fang D (2008) Amyloid β-peptide 31–35-induced neuronal apoptosis is mediated by caspase-dependent pathways via cAMP-dependent protein kinase A activation. Aging Cell 7:47–57

    Article  PubMed  CAS  Google Scholar 

  40. Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789–791

    Article  PubMed  CAS  Google Scholar 

  41. Lapi E, Agostino SD, Donzelli S, Gal H, Domany E, Rechavi G, Pandolfi PP, Givol D, Strano S, Lu X, Blandino G (2008) PML, YAP, and p73 are components of a proapoptotic autoregulatory feedback loop. Mol Cell 32:803–814

    Article  PubMed  CAS  Google Scholar 

  42. Paradis E, Douillard H, Koutroumanis M, Goodyer C, LeBlanc A (1996) Amyloid β peptide of Alzheimer’s disease downregulates Bcl-2 and upregulates Bax expression in human neurons. J Neurosci 16(23):7533–7539

    PubMed  CAS  Google Scholar 

  43. Zhang Y, McLaughlin R, Goodyer C, LeBlanc A (2002) Selective cytotoxicity of intracellular amyloid β peptide 1–42 through p53 and Bax in cultured primary human neurons. J Cell Biol 156:519–529

    Article  PubMed  CAS  Google Scholar 

  44. Adrain C, Martin SJ (2001) The mitochondrial apoptosome: a killer unleashed by the cytochrome seas. Trends Biochem Sci 26:390–397

    Article  PubMed  CAS  Google Scholar 

  45. Rohn TT (2010) The role of caspases in Alzheimer’s disease; potential novel therapeutic opportunities. Apoptosis 15:1403–1409

    Article  PubMed  CAS  Google Scholar 

  46. Melino G, Bernassol F, Ranalli M, Yee K, Zong WX, Corazzari M, Knight RA, Green DR, Thompson C, Vousden KH (2004) p73 induces apoptosis via PUMA transactivation and Bax mitochondrial translocation. J Biol Chem 279:8076–8083

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Basic Research Program of China (2011CB910402; 2010CB732602), the Program for Changjiang Scholars and Innovative Research Team in University (IRT0829), and the National Natural Science Foundation of China (30870676; 30870658). We thank Prof. Subham Basu in Cell Survival Signalling Laboratory Centre for Molecular Oncology and Imaging Barts and The London School of Medicine and Dentistry, John Vane Science Centre, London, UK and Prof. Julian Downward, in Signal Transduction Laboratory, Cancer Research UK London Research Institute, London, UK for kindly providing the plasmid GFP–YAP, and thank Prof. Hedeki Shimodaira in Department of Clincial Oncology Institute of Development, Aging and Cancer Tohoku University, Japan for kindly providing the plasmid YFP–p73, and thank Prof. Andrew P. Gilmore in Wellcome Trust Centre for Cell Matrix Research, School of Biological Sciences, University of Manchester, Manchester for kindly providing the YFP–Bax plasmid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da Xing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Wu, S. & Xing, D. YAP accelerates Aβ25–35-induced apoptosis through upregulation of Bax expression by interaction with p73. Apoptosis 16, 808–821 (2011). https://doi.org/10.1007/s10495-011-0608-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-011-0608-y

Keywords

Navigation